These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37171999)

  • 21. Effects of driver compensatory behaviour on risks of critical pedestrian collisions under simulated visual field defects.
    Lee J; Itoh M
    PLoS One; 2020; 15(4):e0231130. PubMed ID: 32271822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brake time is correlated with lower extremity strength, dynamic balance and low-contrast sensitivity in unpredictable driving situations in elderly drivers compared with young drivers: A cross-sectional study.
    Park Y; Bae Y
    Geriatr Gerontol Int; 2020 Jun; 20(6):571-577. PubMed ID: 32249521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Young and older adult pedestrians' behavior when crossing a street in front of conventional and self-driving cars.
    Dommes A; Merlhiot G; Lobjois R; Dang NT; Vienne F; Boulo J; Oliver AH; Crétual A; Cavallo V
    Accid Anal Prev; 2021 Sep; 159():106256. PubMed ID: 34146938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eye Movements of Drivers with Glaucoma on a Visual Recognition Slide Test.
    Lee SS; Black AA; Wood JM
    Optom Vis Sci; 2019 Jul; 96(7):484-491. PubMed ID: 31274736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Through the Looking Glass: A Review of the Literature Investigating the Impact of Glaucoma on Crash Risk, Driving Performance, and Driver Self-Regulation in Older Drivers.
    Blane A
    J Glaucoma; 2016 Jan; 25(1):113-21. PubMed ID: 25493623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Older Drivers and Glaucoma in India: Driving Habits and Crash Risks.
    Deshmukh AV; Murthy GJ; Reddy A; Murthy PR; Kattige J; Murthy VR
    J Glaucoma; 2019 Oct; 28(10):896-900. PubMed ID: 31385913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driving with central field loss I: effect of central scotomas on responses to hazards.
    Bronstad PM; Bowers AR; Albu A; Goldstein R; Peli E
    JAMA Ophthalmol; 2013 Mar; 131(3):303-9. PubMed ID: 23329309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing driving risk in patients with glaucoma.
    Correa PC; Medeiros FA; Abe RY; Diniz-Filho A; Gracitelli CPB
    Arq Bras Oftalmol; 2019; 82(3):245-252. PubMed ID: 30916214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
    Shah D; Lee C
    J Safety Res; 2021 Sep; 78():242-250. PubMed ID: 34399920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying Fall-Related Hazards in the Homes of Persons with Glaucoma.
    Yonge AV; Swenor BK; Miller R; Goldhammer V; West SK; Friedman DS; Gitlin LN; Ramulu PY
    Ophthalmology; 2017 Apr; 124(4):562-571. PubMed ID: 28017422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brake response time between male drivers with and without paraplegia: Association between sociodemographic, motor and neurological characteristics.
    Santos S; Brech GC; Alonso AC; Greve JMD
    Traffic Inj Prev; 2021; 22(3):207-211. PubMed ID: 33661082
    [No Abstract]   [Full Text] [Related]  

  • 32. Modeling driver behavior in critical traffic scenarios for the safety assessment of automated driving.
    Fries A; Lemberg L; Fahrenkrog F; Mai M; Das A
    Traffic Inj Prev; 2023; 24(sup1):S105-S110. PubMed ID: 37267008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Driving performance of glaucoma patients correlates with peripheral visual field loss.
    Szlyk JP; Mahler CL; Seiple W; Edward DP; Wilensky JT
    J Glaucoma; 2005 Apr; 14(2):145-50. PubMed ID: 15741817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creating pedestrian crash scenarios in a driving simulator environment.
    Chrysler ST; Ahmad O; Schwarz CW
    Traffic Inj Prev; 2015; 16 Suppl 1():S12-7. PubMed ID: 26027964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.
    Wang DD; Richard FD; Cino CR; Blount T; Schmuller J
    Ergonomics; 2017 Apr; 60(4):553-562. PubMed ID: 27210894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of alcohol use on accelerating and braking behaviors of drivers.
    Yadav AK; Velaga NR
    Traffic Inj Prev; 2019; 20(4):353-358. PubMed ID: 31039040
    [No Abstract]   [Full Text] [Related]  

  • 37. Utility of CLOCK CHART binocular edition for self-checking the binocular visual field in patients with glaucoma.
    Ishibashi M; Matsumoto C; Hashimoto S; Eura M; Okuyama S; Nomoto H; Tanabe F; Kayazawa T; Numata T; Kusaka S
    Br J Ophthalmol; 2019 Nov; 103(11):1672-1676. PubMed ID: 30636206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling brake transition time of young alcohol-impaired drivers using hazard-based duration models.
    Yadav AK; Velaga NR
    Accid Anal Prev; 2021 Jul; 157():106169. PubMed ID: 33965845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of superior and inferior visual field loss on hazard detection in a computer-based driving test.
    Glen FC; Smith ND; Crabb DP
    Br J Ophthalmol; 2015 May; 99(5):613-7. PubMed ID: 25425712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring eye movements in patients with glaucoma when viewing a driving scene.
    Crabb DP; Smith ND; Rauscher FG; Chisholm CM; Barbur JL; Edgar DF; Garway-Heath DF
    PLoS One; 2010 Mar; 5(3):e9710. PubMed ID: 20300522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.