BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37172040)

  • 1. Developing forecasting model for future pandemic applications based on COVID-19 data 2020-2022.
    Wan Mohamad Nawi WIA; K Abdul Hamid AA; Lola MS; Zakaria S; Aruchunan E; Gobithaasan RU; Zainuddin NH; Mustafa WA; Abdullah ML; Mokhtar NA; Abdullah MT
    PLoS One; 2023; 18(5):e0285407. PubMed ID: 37172040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Time Forecasting Models Using Machine Learning for Future Pandemic Applications Based on COVID-19 Data 2020-2022.
    K Abdul Hamid AA; Wan Mohamad Nawi WIA; Lola MS; Mustafa WA; Abdul Malik SM; Zakaria S; Aruchunan E; Zainuddin NH; Gobithaasan RU; Abdullah MT
    Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting daily confirmed COVID-19 cases in Malaysia using ARIMA models.
    Singh S; Murali Sundram B; Rajendran K; Boon Law K; Aris T; Ibrahim H; Chandra Dass S; Singh Gill B
    J Infect Dev Ctries; 2020 Sep; 14(9):971-976. PubMed ID: 33031083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of stacking based ARIMA model for prediction of Covid-19 cases in India.
    Swaraj A; Verma K; Kaur A; Singh G; Kumar A; Melo de Sales L
    J Biomed Inform; 2021 Sep; 121():103887. PubMed ID: 34407487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of global omicron pandemic using ARIMA, MLR, and Prophet models.
    Zhao D; Zhang R; Zhang H; He S
    Sci Rep; 2022 Oct; 12(1):18138. PubMed ID: 36307471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.
    Wang YW; Shen ZZ; Jiang Y
    BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study.
    Fang ZG; Yang SQ; Lv CX; An SY; Wu W
    BMJ Open; 2022 Jul; 12(7):e056685. PubMed ID: 35777884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China.
    Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L
    BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting COVID-19 in Pakistan.
    Ali M; Khan DM; Aamir M; Khalil U; Khan Z
    PLoS One; 2020; 15(11):e0242762. PubMed ID: 33253248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-Term Prediction of COVID-19 Using Novel Hybrid Ensemble Empirical Mode Decomposition and Error Trend Seasonal Model.
    Khan DM; Ali M; Iqbal N; Khalil U; Aljohani HM; Alharthi AS; Afify AZ
    Front Public Health; 2022; 10():922795. PubMed ID: 35968475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models.
    Wang Y; Yan Z; Wang D; Yang M; Li Z; Gong X; Wu D; Zhai L; Zhang W; Wang Y
    BMC Infect Dis; 2022 May; 22(1):495. PubMed ID: 35614387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China.
    Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B
    PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time series analysis of hemorrhagic fever with renal syndrome in mainland China by using an XGBoost forecasting model.
    Lv CX; An SY; Qiao BJ; Wu W
    BMC Infect Dis; 2021 Aug; 21(1):839. PubMed ID: 34412581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands.
    Butt FM; Hussain L; Mahmood A; Lone KJ
    Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
    Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J
    Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707
    [No Abstract]   [Full Text] [Related]  

  • 17. Forecasting COVID-19 Case Trends Using SARIMA Models during the Third Wave of COVID-19 in Malaysia.
    Tan CV; Singh S; Lai CH; Zamri ASSM; Dass SC; Aris TB; Ibrahim HM; Gill BS
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach.
    Ye GH; Alim M; Guan P; Huang DS; Zhou BS; Wu W
    PLoS One; 2021; 16(3):e0248597. PubMed ID: 33725011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of hepatitis E using machine learning models.
    Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J
    PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model.
    Singh RK; Rani M; Bhagavathula AS; Sah R; Rodriguez-Morales AJ; Kalita H; Nanda C; Sharma S; Sharma YD; Rabaan AA; Rahmani J; Kumar P
    JMIR Public Health Surveill; 2020 May; 6(2):e19115. PubMed ID: 32391801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.