BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37172139)

  • 1. Parallel Dielectrophoretic Capture, Isolation, and Electrical Lysis of Individual Breast Cancer Cells to Assess Variability in Enzymatic Activity.
    Banovetz JT; Manimaran S; Schelske BT; Anand RK
    Anal Chem; 2023 May; 95(20):7880-7887. PubMed ID: 37172139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis.
    Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK
    Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis.
    Bhattacharya S; Chao TC; Ariyasinghe N; Ruiz Y; Lake D; Ros R; Ros A
    Anal Bioanal Chem; 2014 Mar; 406(7):1855-65. PubMed ID: 24408303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of marker-free selection of single cells at a wireless electrode array with parallel fluidic isolation and electrical lysis.
    Li M; Anand RK
    Chem Sci; 2019 Feb; 10(5):1506-1513. PubMed ID: 30809368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic device for the Separation of non-metastatic (MCF-7) and non-tumor (MCF-10A) breast cancer cells using AC Dielectrophoresis.
    Ur Rehman A; Zabibah RS; Kharratian S; Mustafa A
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36036617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array.
    Li M; Anand RK
    J Am Chem Soc; 2017 Jul; 139(26):8950-8959. PubMed ID: 28609630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective concentration of human cancer cells using contactless dielectrophoresis.
    Henslee EA; Sano MB; Rojas AD; Schmelz EM; Davalos RV
    Electrophoresis; 2011 Sep; 32(18):2523-9. PubMed ID: 21922494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: changes in cross-over frequency.
    Leonard KM; Minerick AR
    Electrophoresis; 2011 Sep; 32(18):2512-22. PubMed ID: 21874652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.
    Park S; Zhang Y; Wang TH; Yang S
    Lab Chip; 2011 Sep; 11(17):2893-900. PubMed ID: 21776517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chip for dielectrophoretic microbial capture, separation and detection II: experimental study.
    Weber MU; Petkowski JJ; Weber RE; Krajnik B; Stemplewski S; Panek M; Dziubak T; Mrozinska P; Piela A; Paluch E
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36640445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic based contactless dielectrophoretic device: Modeling and analysis.
    Minnikanti S; Reyes DR; Aguilar RC; Pancrazio JJ; Gaitan M; Peixoto N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6506-9. PubMed ID: 21096954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes.
    Chen H; Anderson JL; Anand RK
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18087-18096. PubMed ID: 35417143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dielectrophoresis-based platform of cancerous cell capture using aptamer-functionalized gold nanoparticles in a microfluidic channel.
    Vu-Dinh H; Quang LD; Lin YR; Jen CP
    Electrophoresis; 2023 Jun; 44(11-12):1002-1015. PubMed ID: 36896498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Single-Cell Sorting Using a Multisectorial Electroactive Nanowell Platform.
    Menze L; Duarte PA; Haddon L; Chu M; Chen J
    ACS Nano; 2022 Jan; 16(1):211-220. PubMed ID: 34559518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoretic Microfluidic Chip Enables Single-Cell Measurements for Multidrug Resistance in Heterogeneous Acute Myeloid Leukemia Patient Samples.
    Khamenehfar A; Gandhi MK; Chen Y; Hogge DE; Li PC
    Anal Chem; 2016 Jun; 88(11):5680-8. PubMed ID: 27149245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability.
    Varmazyari V; Habibiyan H; Ghafoorifard H; Ebrahimi M; Ghafouri-Fard S
    Sci Rep; 2022 Jul; 12(1):12100. PubMed ID: 35840699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.