These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37172147)

  • 1. Machine Learning Based Risk Prediction for Major Adverse Cardiovascular Events for ELGA-Authorized Clinics1.
    Polat Erdeniz S; Kramer D; Schrempf M; Rainer PP; Felfernig A; Tran TNT; Burgstaller T; Lubos S
    Stud Health Technol Inform; 2023 May; 301():20-25. PubMed ID: 37172147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases.
    Shu S; Ren J; Song J
    Circ J; 2021 Aug; 85(9):1416-1425. PubMed ID: 33883384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the informational continuity of care in diabetes mellitus treatment with a nationwide Shared EHR system: Estimates from Austrian claims data.
    Rinner C; Sauter SK; Endel G; Heinze G; Thurner S; Klimek P; Duftschmid G
    Int J Med Inform; 2016 Aug; 92():44-53. PubMed ID: 27318070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of Machine Learning Tools in Healthcare Decision Making.
    Jayatilake SMDAC; Ganegoda GU
    J Healthc Eng; 2021; 2021():6679512. PubMed ID: 33575021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review.
    Huang JD; Wang J; Ramsey E; Leavey G; Chico TJA; Condell J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Primer on the Present State and Future Prospects for Machine Learning and Artificial Intelligence Applications in Cardiology.
    Manlhiot C; van den Eynde J; Kutty S; Ross HJ
    Can J Cardiol; 2022 Feb; 38(2):169-184. PubMed ID: 34838700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Artificial Intelligence in Acute Coronary Syndrome: A Brief Literature Review.
    Wang H; Zu Q; Chen J; Yang Z; Ahmed MA
    Adv Ther; 2021 Oct; 38(10):5078-5086. PubMed ID: 34528221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare.
    Gill SK; Karwath A; Uh HW; Cardoso VR; Gu Z; Barsky A; Slater L; Acharjee A; Duan J; Dall'Olio L; El Bouhaddani S; Chernbumroong S; Stanbury M; Haynes S; Asselbergs FW; Grobbee DE; Eijkemans MJC; Gkoutos GV; Kotecha D;
    Eur Heart J; 2023 Mar; 44(9):713-725. PubMed ID: 36629285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing the Challenges and Barriers to the Integration of Machine Learning into Clinical Practice: An Innovative Method to Hybrid Human-Machine Intelligence.
    Ed-Driouch C; Mars F; Gourraud PA; Dumas C
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives: A surgeon's guide to machine learning.
    Kuo RYL; Harrison CJ; Jones BE; Geoghegan L; Furniss D
    Int J Surg; 2021 Oct; 94():106133. PubMed ID: 34597822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable Prediction Models Based on Enriched Data for Identifying the Mode of Childbirth by Using Machine Learning Methods: Development Study.
    Ullah Z; Saleem F; Jamjoom M; Fakieh B
    J Med Internet Res; 2021 Jun; 23(6):e28856. PubMed ID: 34085938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence, Machine Learning, and Medicine: A Little Background Goes a Long Way Toward Understanding.
    Cote MP; Lubowitz JH; Brand JC; Rossi MJ
    Arthroscopy; 2021 Jun; 37(6):1699-1702. PubMed ID: 34090555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of patient choice tendency in medical decision-making based on machine learning algorithm.
    Lyu Y; Xu Q; Yang Z; Liu J
    Front Public Health; 2023; 11():1087358. PubMed ID: 36908484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Intelligence in Cardiovascular Medicine.
    Miller DD
    Cardiol Rev; 2020; 28(2):53-64. PubMed ID: 32022759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence-based clinical decision support in pediatrics.
    Ramgopal S; Sanchez-Pinto LN; Horvat CM; Carroll MS; Luo Y; Florin TA
    Pediatr Res; 2023 Jan; 93(2):334-341. PubMed ID: 35906317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence and Machine Learning in Cardiovascular Health Care.
    Kilic A
    Ann Thorac Surg; 2020 May; 109(5):1323-1329. PubMed ID: 31706869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities and challenges in application of artificial intelligence in pharmacology.
    Kumar M; Nguyen TPN; Kaur J; Singh TG; Soni D; Singh R; Kumar P
    Pharmacol Rep; 2023 Feb; 75(1):3-18. PubMed ID: 36624355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence to Improve Risk Prediction with Nuclear Cardiac Studies.
    Juarez-Orozco LE; Klén R; Niemi M; Ruijsink B; Daquarti G; van Es R; Benjamins JW; Yeung MW; van der Harst P; Knuuti J
    Curr Cardiol Rep; 2022 Apr; 24(4):307-316. PubMed ID: 35171443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Supply Chain Financial Risk Prevention Based on Machine Learning.
    Lei Y; Qiaoming H; Tong Z
    Comput Intell Neurosci; 2023; 2023():6531154. PubMed ID: 36923907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.