These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37172236)

  • 1. Phonon-Assisted Intertube Electronic Transport in an Armchair Carbon Nanotube Film.
    Adinehloo D; Gao W; Mojibpour A; Kono J; Perebeinos V
    Phys Rev Lett; 2023 Apr; 130(17):176303. PubMed ID: 37172236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties.
    Pan H; Feng YP; Lin J
    Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh Convergent Thermal Conductivity of Carbon Nanotubes from Comprehensive Atomistic Modeling.
    Barbalinardo G; Chen Z; Dong H; Fan Z; Donadio D
    Phys Rev Lett; 2021 Jul; 127(2):025902. PubMed ID: 34296915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optoelectronic properties of single-wall carbon nanotubes.
    Nanot S; Hároz EH; Kim JH; Hauge RH; Kono J
    Adv Mater; 2012 Sep; 24(36):4977-94. PubMed ID: 22911973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study.
    Hao F; Liao X; Xiao H; Chen X
    Nanotechnology; 2016 Apr; 27(15):155703. PubMed ID: 26926780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon populations and electrical power dissipation in carbon nanotube transistors.
    Steiner M; Freitag M; Perebeinos V; Tsang JC; Small JP; Kinoshita M; Yuan D; Liu J; Avouris P
    Nat Nanotechnol; 2009 May; 4(5):320-4. PubMed ID: 19421219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats.
    Aitkaliyeva A; Chen D; Shao L
    Sci Rep; 2013 Sep; 3():2774. PubMed ID: 24072072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent electronic and phononic oscillations in single-walled carbon nanotubes.
    Eom I; Park S; Han HS; Yee KJ; Baik SH; Jeong DY; Joo T; Lim YS
    Nano Lett; 2012 Feb; 12(2):769-73. PubMed ID: 22268958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron and phonon renormalization near charged defects in carbon nanotubes.
    Maciel IO; Anderson N; Pimenta MA; Hartschuh A; Qian H; Terrones M; Terrones H; Campos-Delgado J; Rao AM; Novotny L; Jorio A
    Nat Mater; 2008 Nov; 7(11):878-83. PubMed ID: 18931672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low bias electron scattering in structure-identified single wall carbon nanotubes: role of substrate polar phonons.
    Chandra B; Perebeinos V; Berciaud S; Katoch J; Ishigami M; Kim P; Heinz TF; Hone J
    Phys Rev Lett; 2011 Sep; 107(14):146601. PubMed ID: 22107221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures.
    Hu S; Zhang Z; Jiang P; Ren W; Yu C; Shiomi J; Chen J
    Nanoscale; 2019 Jun; 11(24):11839-11846. PubMed ID: 31184669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon engineering in carbon nanotubes by controlling defect concentration.
    Sevik C; Sevinçli H; Cuniberti G; Cağın T
    Nano Lett; 2011 Nov; 11(11):4971-7. PubMed ID: 21967464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions.
    Htoon H; O'Connell MJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2005 Apr; 94(12):127403. PubMed ID: 15903961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal-structural relationship of individual titania nanotubes.
    Brahmi H; Katwal G; Khodadadi M; Chen S; Paulose M; Varghese OK; Mavrokefalos A
    Nanoscale; 2015 Dec; 7(45):19004-11. PubMed ID: 26512924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.