These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 37172278)
21. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Zhu Y; Li X; Wang L; Hong X; Yang J Front Endocrinol (Lausanne); 2022; 13():988295. PubMed ID: 36046791 [TBL] [Abstract][Full Text] [Related]
22. Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway. Li J; Liu H; Liu X; Hao S; Zhang Z; Xuan H J Immunol Res; 2021; 2021():6641341. PubMed ID: 33628847 [TBL] [Abstract][Full Text] [Related]
23. System analysis based on glutamine catabolic-related enzymes identifies GPT2 as a novel immunotherapy target for lung adenocarcinoma. Wang B; Pei J; Xu S; Liu J; Yu J Comput Biol Med; 2023 Oct; 165():107415. PubMed ID: 37657356 [TBL] [Abstract][Full Text] [Related]
24. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Ocaña MC; Martínez-Poveda B; Quesada AR; Medina MÁ Med Res Rev; 2019 Jan; 39(1):70-113. PubMed ID: 29785785 [TBL] [Abstract][Full Text] [Related]
25. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Eskandari-Malayeri F; Rezaei M Front Immunol; 2022; 13():996145. PubMed ID: 36275750 [TBL] [Abstract][Full Text] [Related]
26. Lactic acid: a narrative review of a promoter of the liver cancer microenvironment. Chen J; He G; Cai D; Giovannetti E; Inamura K; Liu S; Ma W J Gastrointest Oncol; 2024 Jun; 15(3):1282-1296. PubMed ID: 38989406 [TBL] [Abstract][Full Text] [Related]
27. The role of lipid metabolic reprogramming in tumor microenvironment. Yang K; Wang X; Song C; He Z; Wang R; Xu Y; Jiang G; Wan Y; Mei J; Mao W Theranostics; 2023; 13(6):1774-1808. PubMed ID: 37064872 [TBL] [Abstract][Full Text] [Related]
28. A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Liu X; Zhao Y; Wu X; Liu Z; Liu X Front Oncol; 2022; 12():931104. PubMed ID: 35924168 [TBL] [Abstract][Full Text] [Related]
29. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. Wu Q; Zhou L; Lv D; Zhu X; Tang H J Hematol Oncol; 2019 May; 12(1):53. PubMed ID: 31142326 [TBL] [Abstract][Full Text] [Related]
30. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Zhao J; Jin D; Huang M; Ji J; Xu X; Wang F; Zhou L; Bao B; Jiang F; Xu W; Lu X; Xiao M Front Cell Dev Biol; 2024; 12():1416472. PubMed ID: 38933335 [TBL] [Abstract][Full Text] [Related]
31. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Marín-Hernández A; Gallardo-Pérez JC; Ralph SJ; Rodríguez-Enríquez S; Moreno-Sánchez R Mini Rev Med Chem; 2009 Aug; 9(9):1084-101. PubMed ID: 19689405 [TBL] [Abstract][Full Text] [Related]
32. Exosomes: Critical Mediators of Tumour Microenvironment Reprogramming. Malla RR; Shailender G; Kamal MA Curr Med Chem; 2021; 28(39):8182-8202. PubMed ID: 33334279 [TBL] [Abstract][Full Text] [Related]
33. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Curcio C; Brugiapaglia S; Bulfamante S; Follia L; Cappello P; Novelli F Molecules; 2021 Mar; 26(6):. PubMed ID: 33804240 [TBL] [Abstract][Full Text] [Related]
34. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527 [TBL] [Abstract][Full Text] [Related]
35. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Chiavarina B; Whitaker-Menezes D; Martinez-Outschoorn UE; Witkiewicz AK; Birbe R; Howell A; Pestell RG; Smith J; Daniel R; Sotgia F; Lisanti MP Cancer Biol Ther; 2011 Dec; 12(12):1101-13. PubMed ID: 22236875 [TBL] [Abstract][Full Text] [Related]
36. Revisiting the Warburg effect: historical dogma versus current understanding. Vaupel P; Multhoff G J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611 [TBL] [Abstract][Full Text] [Related]
37. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment. Ma G; Zhang Z; Li P; Zhang Z; Zeng M; Liang Z; Li D; Wang L; Chen Y; Liang Y; Niu H Cell Commun Signal; 2022 Jul; 20(1):114. PubMed ID: 35897036 [TBL] [Abstract][Full Text] [Related]
39. Current Advancements of Plant-Derived Agents for Triple-Negative Breast Cancer Therapy through Deregulating Cancer Cell Functions and Reprogramming Tumor Microenvironment. Wu TN; Chen HM; Shyur LF Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948368 [TBL] [Abstract][Full Text] [Related]
40. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects. Peters S; Paz-Ares L; Herbst RS; Reck M J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35858709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]