BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37172280)

  • 1. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in
    Lin P; Fu Z; Liu X; Liu C; Bai Z; Yang Y; Li Y
    ACS Synth Biol; 2023 Jun; 12(6):1599-1607. PubMed ID: 37172280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced production of acetyl-CoA-based products via peroxisomal surface display in
    Yocum HC; Bassett S; Da Silva NA
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2214941119. PubMed ID: 36409888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis.
    Milke L; Marienhagen J
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase.
    Choi JW; Da Silva NA
    J Biotechnol; 2014 Oct; 187():56-9. PubMed ID: 25078432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
    Schwanemann T; Otto M; Wynands B; Marienhagen J; Wierckx N
    Metab Eng; 2023 May; 77():219-230. PubMed ID: 37031949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.
    Wang J; Xu R; Wang R; Haque ME; Liu A
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1214-22. PubMed ID: 26865376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase.
    Richardson MT; Pohl NL; Kealey JT; Khosla C
    Metab Eng; 1999 Apr; 1(2):180-7. PubMed ID: 10935930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides.
    Maharjan S; Park JW; Yoon YJ; Lee HC; Sohng JK
    Biotechnol Lett; 2010 Feb; 32(2):277-82. PubMed ID: 19838628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of the plant polyketide curcumin in
    Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y
    Biosci Biotechnol Biochem; 2019 Jul; 83(7):1372-1381. PubMed ID: 31023165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.
    Chen Y; Siewers V; Nielsen J
    PLoS One; 2012; 7(8):e42475. PubMed ID: 22876324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale.
    Jovanovic Gasovic S; Dietrich D; Gläser L; Cao P; Kohlstedt M; Wittmann C
    Metab Eng; 2023 Nov; 80():45-65. PubMed ID: 37683719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply.
    Wattanachaisaereekul S; Lantz AE; Nielsen ML; Nielsen J
    Metab Eng; 2008 Sep; 10(5):246-54. PubMed ID: 18555717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient heterologous production of atrochrysone carboxylic acid-related polyketides in an Aspergillus oryzae host with enhanced malonyl-coenzyme A supply.
    Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y
    J Gen Appl Microbiol; 2020 Aug; 66(3):195-199. PubMed ID: 31776294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells.
    Wang Y; Chen H; Yu O
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5435-47. PubMed ID: 24682482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2
    Zhang Q; Yu S; Lyu Y; Zeng W; Zhou J
    ACS Synth Biol; 2021 May; 10(5):1166-1175. PubMed ID: 33877810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaining access to acetyl-CoA by peroxisomal surface display.
    Perrot T; Besseau S; Papon N; Courdavault V
    Synth Syst Biotechnol; 2023 Jun; 8(2):224-226. PubMed ID: 36936387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.