These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37172574)
1. Tailoring cavity coupled plasmonic substrates for SERS applications. L M J; Pillanagrovi J; Dutta-Gupta S Nanotechnology; 2023 Jun; 34(33):. PubMed ID: 37172574 [TBL] [Abstract][Full Text] [Related]
2. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. Park M; Hwang CSH; Jeong KH ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification. Han Y; Wu SR; Tian XD; Zhang Y ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications. Li D; Aubertin K; Onidas D; Nizard P; Félidj N; Gazeau F; Mangeney C; Luo Y Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jul; 14(4):e1795. PubMed ID: 35362261 [TBL] [Abstract][Full Text] [Related]
5. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene. Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L Front Chem; 2022; 10():832282. PubMed ID: 35355787 [TBL] [Abstract][Full Text] [Related]
6. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. Ten A; Lomonosov V; Boukouvala C; Ringe E ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330 [TBL] [Abstract][Full Text] [Related]
7. Controlled assembly of gold nanoparticles in resonant gold nanoapertures for SERS applications. Pillanagrovi J; Dutta-Gupta S Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 36001942 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch. Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809 [TBL] [Abstract][Full Text] [Related]
9. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study. Li Z; Zhang Z; Chen K Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979000 [TBL] [Abstract][Full Text] [Related]
10. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis. Khoury CG; Vo-Dinh T J Phys Chem C Nanomater Interfaces; 2012 Apr; 116(13):7534-7545. PubMed ID: 24839506 [TBL] [Abstract][Full Text] [Related]
12. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures. Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057 [TBL] [Abstract][Full Text] [Related]
13. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch. Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866 [TBL] [Abstract][Full Text] [Related]
14. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection. Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523 [TBL] [Abstract][Full Text] [Related]
15. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass. Bian J; Li Q; Huang C; Guo Y; Zaw M; Zhang RQ Phys Chem Chem Phys; 2015 Jun; 17(22):14849-55. PubMed ID: 25980466 [TBL] [Abstract][Full Text] [Related]
16. Mode-Coupling Generation Using ITO Nanodisk Arrays with Au Substrate Enabling Narrow-Band Biosensing. Chu S; Liang Y; Lu M; Yuan H; Han Y; Masson JF; Peng W Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367014 [TBL] [Abstract][Full Text] [Related]
17. Electromagnetic theories of surface-enhanced Raman spectroscopy. Ding SY; You EM; Tian ZQ; Moskovits M Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954 [TBL] [Abstract][Full Text] [Related]
18. Cubic Silver Nanoparticles Fixed on TiO Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068 [TBL] [Abstract][Full Text] [Related]