BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37172574)

  • 1. Tailoring cavity coupled plasmonic substrates for SERS applications.
    L M J; Pillanagrovi J; Dutta-Gupta S
    Nanotechnology; 2023 Jun; 34(33):. PubMed ID: 37172574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification.
    Han Y; Wu SR; Tian XD; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in non-plasmonic surface-enhanced Raman spectroscopy nanostructures for biomedical applications.
    Li D; Aubertin K; Onidas D; Nizard P; Félidj N; Gazeau F; Mangeney C; Luo Y
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jul; 14(4):e1795. PubMed ID: 35362261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis.
    Ten A; Lomonosov V; Boukouvala C; Ringe E
    ACS Nano; 2024 Jul; ():. PubMed ID: 38963330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled assembly of gold nanoparticles in resonant gold nanoapertures for SERS applications.
    Pillanagrovi J; Dutta-Gupta S
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 36001942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R
    Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium⁻Tin⁻Oxide Nanostructures for Plasmon-Enhanced Infrared Spectroscopy: A Numerical Study.
    Li Z; Zhang Z; Chen K
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis.
    Khoury CG; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2012 Apr; 116(13):7534-7545. PubMed ID: 24839506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.
    Bian J; Li Q; Huang C; Guo Y; Zaw M; Zhang RQ
    Phys Chem Chem Phys; 2015 Jun; 17(22):14849-55. PubMed ID: 25980466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode-Coupling Generation Using ITO Nanodisk Arrays with Au Substrate Enabling Narrow-Band Biosensing.
    Chu S; Liang Y; Lu M; Yuan H; Han Y; Masson JF; Peng W
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic theories of surface-enhanced Raman spectroscopy.
    Ding SY; You EM; Tian ZQ; Moskovits M
    Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cubic Silver Nanoparticles Fixed on TiO
    Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Metal-Dielectric-Metal Sandwiches for SERS Applications.
    Tatmyshevskiy MK; Yakubovsky DI; Kapitanova OO; Solovey VR; Vyshnevyy AA; Ermolaev GA; Klishin YA; Mironov MS; Voronov AA; Arsenin AV; Volkov VS; Novikov SM
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy.
    Lartey JA; Harms JP; Frimpong R; Mulligan CC; Driskell JD; Kim JH
    RSC Adv; 2019 Oct; 9(56):32535-32543. PubMed ID: 35529713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.