These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37172574)

  • 61. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA.
    Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Silver Flowerlike Structures for Surface-Enhanced Raman Spectroscopy.
    Tsutsumanova GG; Todorov ND; Russev SC; Abrashev MV; Ivanov VG; Lukoyanov AV
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947532
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence of plasmonic coupling in gallium nanoparticles/graphene/SiC.
    Yi C; Kim TH; Jiao W; Yang Y; Lazarides A; Hingerl K; Bruno G; Brown A; Losurdo M
    Small; 2012 Sep; 8(17):2721-30. PubMed ID: 22674808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hexagonal Boron Nitride/Au Substrate for Manipulating Surface Plasmon and Enhancing Capability of Surface-Enhanced Raman Spectroscopy.
    Kim G; Kim M; Hyun C; Hong S; Ma KY; Shin HS; Lim H
    ACS Nano; 2016 Dec; 10(12):11156-11162. PubMed ID: 28024355
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis.
    Sultangaziyev A; Ilyas A; Dyussupova A; Bukasov R
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354477
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Under-Etched Plasmonic Disks on Indium Tin Oxide for Enhanced Refractive Index Sensing on a Combined Electrochemical and Optical Platform.
    Dyrnesli H; Klös G; Sutherland DS
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069943
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review.
    Jebakumari KAE; Murugasenapathi NK; Palanisamy T
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671937
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Numerical investigation of plasmon sensitivity and surface-enhanced Raman scattering enhancement of individual TiN nanosphere multimers.
    Fu T; Chen Y; Du C; Yang W; Zhang R; Sun L; Shi D
    Nanotechnology; 2020 Mar; 31(13):135210. PubMed ID: 31835258
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A sensitive SERS substrate based on Au/TiO2/Au nanosheets.
    Jiang L; Liang X; You T; Yin P; Wang H; Guo L; Yang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():50-4. PubMed ID: 25699693
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO
    Wen S; Su Y; Wu R; Zhou S; Min Q; Fan GC; Jiang LP; Song RB; Zhu JJ
    Biosens Bioelectron; 2018 Oct; 117():260-266. PubMed ID: 29909197
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Utilization of Inexpensive Carbon-Based Substrates as Platforms for Sensing.
    Tran M; Fallatah A; Whale A; Padalkar S
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060494
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones.
    Viehrig M; Thilsted AH; Matteucci M; Wu K; Catak D; Schmidt MS; Zór K; Boisen A
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37417-37425. PubMed ID: 30277378
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface.
    Long Z; Liang Y; Feng L; Zhang H; Liu M; Xu T
    Nanoscale; 2020 May; 12(19):10809-10815. PubMed ID: 32392273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism-Electromagnetic Mechanism Unit.
    Liu L; Hou S; Zhao X; Liu C; Li Z; Li C; Xu S; Wang G; Yu J; Zhang C; Man B
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260554
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array.
    Wu HY; Choi CJ; Cunningham BT
    Small; 2012 Sep; 8(18):2878-85. PubMed ID: 22761112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.