These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 37172574)
81. Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering. Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P Nanotechnology; 2016 Dec; 27(49):495402. PubMed ID: 27827351 [TBL] [Abstract][Full Text] [Related]
82. Gap-Dependent Surface-Enhanced Raman Scattering (SERS) Enhancement Model of SERS Substrate-Probe Combination Using a Polyelectrolyte Nanodroplet as a Distance Controller. Karn-Orachai K Langmuir; 2021 Sep; 37(36):10776-10785. PubMed ID: 34463518 [TBL] [Abstract][Full Text] [Related]
83. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing. Barbillon G Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575470 [TBL] [Abstract][Full Text] [Related]
84. Monolayer Graphene Coupled to a Flexible Plasmonic Nanograting for Ultrasensitive Strain Monitoring. Tiefenauer RF; Dalgaty T; Keplinger T; Tian T; Shih CJ; Vörös J; Aramesh M Small; 2018 Jul; 14(28):e1801187. PubMed ID: 29882299 [TBL] [Abstract][Full Text] [Related]
85. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. Golubewa L; Karpicz R; Matulaitiene I; Selskis A; Rutkauskas D; Pushkarchuk A; Khlopina T; Michels D; Lyakhov D; Kulahava T; Shah A; Svirko Y; Kuzhir P ACS Appl Mater Interfaces; 2020 Nov; 12(45):50971-50984. PubMed ID: 33107725 [TBL] [Abstract][Full Text] [Related]
86. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776 [TBL] [Abstract][Full Text] [Related]
87. Dynamic Plasmonic Platform To Investigate the Correlation between Far-Field Optical Response and SERS Signal of Analytes. Nguyen M; Kherbouche I; Braik M; Belkhir A; Boubekeur-Lecaque L; Aubard J; Mangeney C; Felidj N ACS Omega; 2019 Jan; 4(1):1144-1150. PubMed ID: 31459390 [TBL] [Abstract][Full Text] [Related]
88. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
89. Adhesive surface-enhanced Raman scattering Cu-Au nanoassembly for the sensitive analysis of particulate matter. Wang N; Gan Z; Duan F; Chen H; Ma C; Ji J; Sun Z J Environ Sci (China); 2023 Jun; 128():35-44. PubMed ID: 36801040 [TBL] [Abstract][Full Text] [Related]
90. Highly sensitive and uniform surface-enhanced Raman spectroscopy from grating-integrated plasmonic nanograss. Shen Y; Cheng X; Li G; Zhu Q; Chi Z; Wang J; Jin C Nanoscale Horiz; 2016 Jul; 1(4):290-297. PubMed ID: 32260648 [TBL] [Abstract][Full Text] [Related]
91. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures. Liu K; Gong T; Luo Y; Kong W; Yue W; Wang C; Luo X Opt Express; 2023 May; 31(10):15848-15863. PubMed ID: 37157676 [TBL] [Abstract][Full Text] [Related]
92. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy. Zheng M; Zhu X; Chen Y; Xiang Q; Duan H Nanotechnology; 2017 Jan; 28(4):045303. PubMed ID: 27981948 [TBL] [Abstract][Full Text] [Related]