These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37172846)

  • 1. Role of soil microplastic pollution in climate change.
    Chia RW; Lee JY; Lee M; Lee GS; Jeong CD
    Sci Total Environ; 2023 Aug; 887():164112. PubMed ID: 37172846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of different microplastics promotes greenhouse gas emissions and alters the microbial community composition of farmland soil.
    Chen X; Xie Y; Wang J; Shi Z; Zhang J; Wei H; Ma Y
    Sci Total Environ; 2023 Jun; 879():162967. PubMed ID: 36948309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycorrhizosphere bacteria inhibit greenhouse gas emissions from microplastics contaminated soil by regulating soil enzyme activities and microbial community structure.
    Khan Z; Shah T; Haider G; Adnan F; Sheikh Z; El-Sheikh MA; Bhatti MF; Ahmad P
    J Environ Manage; 2024 Apr; 356():120673. PubMed ID: 38508003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could soil microplastic pollution exacerbate climate change? A meta-analysis of greenhouse gas emissions and global warming potential.
    Iqbal S; Xu J; Saleem Arif M; Shakoor A; Worthy FR; Gui H; Khan S; Bu D; Nader S; Ranjitkar S
    Environ Res; 2024 Jul; 252(Pt 2):118945. PubMed ID: 38631466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Straw incorporation into microplastic-contaminated soil can reduce greenhouse gas emissions by enhancing soil enzyme activities and microbial community structure.
    Shah T; Khan Z; Asad M; Imran A; Niazi MBK; Dewil R; Ahmad A; Ahmad P
    J Environ Manage; 2024 Feb; 351():119616. PubMed ID: 38042071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils.
    Yu Y; Li X; Feng Z; Xiao M; Ge T; Li Y; Yao H
    J Hazard Mater; 2022 Jun; 432():128721. PubMed ID: 35334262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing.
    Shakoor A; Ashraf F; Shakoor S; Mustafa A; Rehman A; Altaf MM
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38513-38536. PubMed ID: 32770337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil.
    Ren X; Tang J; Liu X; Liu Q
    Environ Pollut; 2020 Jan; 256():113347. PubMed ID: 31672352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments.
    Wang S; Zhou Q; Hu X; Tao Z
    Water Res; 2024 Mar; 251():121167. PubMed ID: 38301404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The response of soil-atmosphere greenhouse gas exchange to changing plant litter inputs in terrestrial forest ecosystems.
    Cui J; Lam SK; Xu S; Lai DYF
    Sci Total Environ; 2022 Sep; 838(Pt 2):155995. PubMed ID: 35588851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of freeze-thaw cycles on soil greenhouse gas emissions: A systematic review.
    Liu Y; Wang X; Wen Y; Cai H; Song X; Zhang Z
    Environ Res; 2024 May; 248():118386. PubMed ID: 38316387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-native plant invasion can accelerate global climate change by increasing wetland methane and terrestrial nitrous oxide emissions.
    Bezabih Beyene B; Li J; Yuan J; Dong Y; Liu D; Chen Z; Kim J; Kang H; Freeman C; Ding W
    Glob Chang Biol; 2022 Sep; 28(18):5453-5468. PubMed ID: 35665574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.
    Nag SK; Liu R; Lal R
    Environ Monit Assess; 2017 Oct; 189(11):580. PubMed ID: 29063197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis.
    Gao H; Tian H; Zhang Z; Xia X
    Sci Total Environ; 2022 May; 820():153288. PubMed ID: 35066045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data.
    Wang L; Li C; Dong J; Quan Q; Liu J
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44973-44986. PubMed ID: 33855665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new index on agricultural land greenhouse gas emissions in Africa.
    Epule TE; Chehbouni A; Ongoma V; Brouziyne Y; Etongo D; Molua EL
    Environ Monit Assess; 2022 Jul; 194(9):598. PubMed ID: 35864278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data.
    Bond-Lamberty B; Christianson DS; Malhotra A; Pennington SC; Sihi D; AghaKouchak A; Anjileli H; Altaf Arain M; Armesto JJ; Ashraf S; Ataka M; Baldocchi D; Andrew Black T; Buchmann N; Carbone MS; Chang SC; Crill P; Curtis PS; Davidson EA; Desai AR; Drake JE; El-Madany TS; Gavazzi M; Görres CM; Gough CM; Goulden M; Gregg J; Gutiérrez Del Arroyo O; He JS; Hirano T; Hopple A; Hughes H; Järveoja J; Jassal R; Jian J; Kan H; Kaye J; Kominami Y; Liang N; Lipson D; Macdonald CA; Maseyk K; Mathes K; Mauritz M; Mayes MA; McNulty S; Miao G; Migliavacca M; Miller S; Miniat CF; Nietz JG; Nilsson MB; Noormets A; Norouzi H; O'Connell CS; Osborne B; Oyonarte C; Pang Z; Peichl M; Pendall E; Perez-Quezada JF; Phillips CL; Phillips RP; Raich JW; Renchon AA; Ruehr NK; Sánchez-Cañete EP; Saunders M; Savage KE; Schrumpf M; Scott RL; Seibt U; Silver WL; Sun W; Szutu D; Takagi K; Takagi M; Teramoto M; Tjoelker MG; Trumbore S; Ueyama M; Vargas R; Varner RK; Verfaillie J; Vogel C; Wang J; Winston G; Wood TE; Wu J; Wutzler T; Zeng J; Zha T; Zhang Q; Zou J
    Glob Chang Biol; 2020 Dec; 26(12):7268-7283. PubMed ID: 33026137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroperiod, soil moisture and bioturbation are critical drivers of greenhouse gas fluxes and vary as a function of landuse change in mangroves of Sulawesi, Indonesia.
    Cameron C; Hutley LB; Friess DA; Munksgaard NC
    Sci Total Environ; 2019 Mar; 654():365-377. PubMed ID: 30447576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate.
    Ashiq W; Nadeem M; Ali W; Zaeem M; Wu J; Galagedara L; Thomas R; Kavanagh V; Cheema M
    Environ Pollut; 2020 Oct; 265(Pt A):114869. PubMed ID: 32502870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urban landscapes and legacy industry provide hotspots for riverine greenhouse gases: A source-to-sea study of the River Clyde.
    Brown AM; Bass AM; Skiba U; MacDonald JM; Pickard AE
    Water Res; 2023 Jun; 236():119969. PubMed ID: 37099862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.