These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 37172862)

  • 1. Multiple outgroups can cause random rooting in phylogenomics.
    DeSalle R; Narechania A; Tessler M
    Mol Phylogenet Evol; 2023 Jul; 184():107806. PubMed ID: 37172862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rooting phylogenetic trees with distant outgroups: a case study from the commelinoid monocots.
    Graham SW; Olmstead RG; Barrett SC
    Mol Biol Evol; 2002 Oct; 19(10):1769-81. PubMed ID: 12270903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics.
    Rota-Stabelli O; Telford MJ
    Mol Phylogenet Evol; 2008 Jul; 48(1):103-11. PubMed ID: 18501642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When outgroups fail; phylogenomics of rooting the emerging pathogen, Coxiella burnetii.
    Pearson T; Hornstra HM; Sahl JW; Schaack S; Schupp JM; Beckstrom-Sternberg SM; O'Neill MW; Priestley RA; Champion MD; Beckstrom-Sternberg JS; Kersh GJ; Samuel JE; Massung RF; Keim P
    Syst Biol; 2013 Sep; 62(5):752-62. PubMed ID: 23736103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetics of Chondrichthyes and the problem of rooting phylogenies with distant outgroups.
    Li C; Matthes-Rosana KA; Garcia M; Naylor GJ
    Mol Phylogenet Evol; 2012 May; 63(2):365-73. PubMed ID: 22300842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random roots and lineage sorting.
    Rosenfeld JA; Payne A; DeSalle R
    Mol Phylogenet Evol; 2012 Jul; 64(1):12-20. PubMed ID: 22445448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups.
    Szucsich NU; Bartel D; Blanke A; Böhm A; Donath A; Fukui M; Grove S; Liu S; Macek O; Machida R; Misof B; Nakagaki Y; Podsiadlowski L; Sekiya K; Tomizuka S; Von Reumont BM; Waterhouse RM; Walzl M; Meng G; Zhou X; Pass G; Meusemann K
    BMC Evol Biol; 2020 Nov; 20(1):144. PubMed ID: 33148176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rooting with Multiple Outgroups: Consensus Versus Parsimony.
    Barriel V; Tassy P
    Cladistics; 1998 Jun; 14(2):193-200. PubMed ID: 34902930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree rooting with outgroups when they differ in their nucleotide composition from the ingroup: the Drosophila saltans and willistoni groups, a case study.
    Tarrío R; Rodríguez-Trelles F; Ayala FJ
    Mol Phylogenet Evol; 2000 Sep; 16(3):344-9. PubMed ID: 10991788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenomics: gene duplication, unrecognized paralogy and outgroup choice.
    Roy SW
    PLoS One; 2009; 4(2):e4568. PubMed ID: 19234600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding optimal ingroup topologies and convexities when the choice of outgroups is not obvious.
    Milinkovitch MC; Lyons-Weiler J
    Mol Phylogenet Evol; 1998 Jun; 9(3):348-57. PubMed ID: 9667982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetics of Coenonymphina (Nymphalidae: Satyrinae) and the problem of rooting rapid radiations.
    Kodandaramaiah U; Peña C; Braby MF; Grund R; Müller CJ; Nylin S; Wahlberg N
    Mol Phylogenet Evol; 2010 Feb; 54(2):386-94. PubMed ID: 19686856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirical test of the midpoint rooting method.
    Hess PN; DE Moraes Russo CA
    Biol J Linn Soc Lond; 2007 Dec; 92(4):669-674. PubMed ID: 32287391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NUCLEIC ACID SEQUENCE PHYLOGENY AND RANDOM OUTGROUPS.
    Wheeler WC
    Cladistics; 1990 Dec; 6(4):363-367. PubMed ID: 34933486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya.
    Qiu YL; Lee J; Whitlock BA; Bernasconi-Quadroni F; Dombrovska O
    Mol Biol Evol; 2001 Sep; 18(9):1745-53. PubMed ID: 11504854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping characters on a tree with or without the outgroups.
    Grandcolas P; Guilbert E; Robillard T; D'Haese CA; Murienne J; Legendre F
    Cladistics; 2004 Dec; 20(6):579-582. PubMed ID: 34892960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of long-branch attraction.
    Bergsten J
    Cladistics; 2005 Apr; 21(2):163-193. PubMed ID: 34892859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene tree rooting methods give distributions that mimic the coalescent process.
    Tian Y; Kubatko LS
    Mol Phylogenet Evol; 2014 Jan; 70():63-9. PubMed ID: 24055603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rooting the Animal Tree of Life.
    Li Y; Shen XX; Evans B; Dunn CW; Rokas A
    Mol Biol Evol; 2021 Sep; 38(10):4322-4333. PubMed ID: 34097041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup.
    Murdock AG
    Am J Bot; 2008 May; 95(5):626-41. PubMed ID: 21632388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.