BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37173032)

  • 1. Tackling the challenge of drying and redispersion of cellulose nanofibrils via membrane-facilitated liquid phase exchange.
    Onyianta AJ; Xu G; Etale A; Eloi JC; Eichhorn SJ
    Carbohydr Polym; 2023 Aug; 314():120943. PubMed ID: 37173032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hemicellulose hydrolysate addition on the dehydration and redispersion characteristic of cellulose nanofibrils.
    Kim J; Kim J; Jung S; Yun H; Won S; Choi IG; Kwak HW
    Carbohydr Polym; 2024 Jun; 334():122036. PubMed ID: 38553234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils.
    Velásquez-Cock J; Gómez H BE; Posada P; Serpa G A; Gómez H C; Castro C; Gañán P; Zuluaga R
    Carbohydr Polym; 2018 Jan; 179():118-125. PubMed ID: 29111034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-linkage (1,3;1,4)-β-d-glucans as rehydration media for improved redispersion of dried cellulose nanofibrils.
    Zha L; Wang S; Berglund LA; Zhou Q
    Carbohydr Polym; 2023 Jan; 300():120276. PubMed ID: 36372496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different pre-treatments on the redispersion capacity of spray-dried microfibrillated cellulose: Elaboration and characterization of biofilms.
    Setter C; Dias MC; Mascarenhas ARP; Tonoli GHD; de Oliveira TJP
    Int J Biol Macromol; 2023 Jul; 243():125279. PubMed ID: 37301348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Effects of Sodium Chloride and Potassium Chloride on Spray Drying and Redispersion of Cellulose Nanofibrils Suspension.
    Yang G; Ma G; He M; Ji X; Li W; Youn HJ; Lee HL; Chen J
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redispersion and structural change evaluation of dried microfibrillated cellulose.
    Silva LE; Dos Santos AA; Torres L; McCaffrey Z; Klamczynski A; Glenn G; Sena Neto AR; Wood D; Williams T; Orts W; Damásio RAP; Tonoli GHD
    Carbohydr Polym; 2021 Jan; 252():117165. PubMed ID: 33183616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography.
    Peng Y; Gardner DJ; Han Y; Cai Z; Tshabalala MA
    J Colloid Interface Sci; 2013 Sep; 405():85-95. PubMed ID: 23786833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Aqueous Grafting of Polystyrene through Methacrylate-Modified Cellulose Nanofibrils on Emulsion Stabilization and Drying Behavior.
    Driscoll ME; Kelly PV; Gramlich WM
    Langmuir; 2023 May; 39(20):7079-7090. PubMed ID: 37170894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying.
    Darpentigny C; Nonglaton G; Bras J; Jean B
    Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying.
    Cervin NT; Johansson E; Larsson PA; Wågberg L
    ACS Appl Mater Interfaces; 2016 May; 8(18):11682-9. PubMed ID: 27070532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion conductivity through TEMPO-mediated oxidated and periodate oxidated cellulose membranes.
    Dahlström C; López Durán V; Keene ST; Salleo A; Norgren M; Wågberg L
    Carbohydr Polym; 2020 Apr; 233():115829. PubMed ID: 32059883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate-Chlorite Oxidation.
    Guo M; Ede JD; Sayes CM; Shatkin JA; Stark N; Hsieh YL
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeposition of cellulose nanofibers as an efficient dehydration method.
    Kasuga T; Li C; Mizui A; Ishioka S; Koga H; Nogi M
    Carbohydr Polym; 2024 Sep; 340():122310. PubMed ID: 38858010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency.
    Trigui K; De Loubens C; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Jul; 240():116342. PubMed ID: 32475596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of Suspensions of TEMPO-Oxidised and Cationic Cellulose Nanofibrils-The Effect of Chemical Pre-Treatment.
    Alves L; Magalhães S; Pedrosa JFS; Ferreira PJT; Gamelas JAF; Rasteiro MG
    Gels; 2024 May; 10(6):. PubMed ID: 38920914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporative Dry Powders Derived from Cellulose Nanofiber Organogels to Fully Recover Inherent High Viscosity and High Transparency of Water Dispersion.
    Yagyu H; Kasuga T; Ogata N; Koga H; Daicho K; Goi Y; Nogi M
    Macromol Rapid Commun; 2023 Sep; 44(17):e2300186. PubMed ID: 37265024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.