BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3717328)

  • 1. Sulfhydryl substituents of the human erythrocyte hexose transport mechanism.
    Abbott RE; Schachter D; Batt ER; Flamm M
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C853-60. PubMed ID: 3717328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography and functions of sulfhydryl groups of the human erythrocyte glucose transport mechanism.
    Abbott RE; Schachter D
    Mol Cell Biochem; 1988; 82(1-2):85-90. PubMed ID: 3185521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impermeant maleimides. Identification of an exofacial component of the human erythrocyte hexose transport mechanism.
    Batt ER; Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7184-90. PubMed ID: 993210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of an exofacial sulfhydryl group on the erythrocyte hexose carrier with an impermeant maleimide. Relevance to the mechanism of hexose transport.
    May JM
    J Biol Chem; 1988 Sep; 263(27):13635-40. PubMed ID: 3417676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of a permeant maleimide derivative of cysteine with the erythrocyte glucose carrier. Differential labelling of an exofacial carrier thiol group and its role in the transport mechanism.
    May JM
    Biochem J; 1989 Nov; 263(3):875-81. PubMed ID: 2489029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of hexose transport in the human erythrocyte by 5, 5'-dithiobis(2-nitrobenzoic acid): role of an exofacial carrier sulfhydryl group.
    May JM
    J Membr Biol; 1989 Jun; 108(3):227-33. PubMed ID: 2778797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose.
    May JM
    Biochem J; 1988 Sep; 254(2):329-36. PubMed ID: 3178762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential labeling of the erythrocyte hexose carrier by N-ethylmaleimide: correlation of transport inhibition with reactive carrier sulfhydryl groups.
    May JM
    Biochim Biophys Acta; 1989 Nov; 986(2):207-16. PubMed ID: 2590670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of hexose transport by permeant and impermeant sulfhydryl agents in rat adipocytes.
    May JM
    J Biol Chem; 1985 Jan; 260(1):462-7. PubMed ID: 3880745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of membrane sulfhydryls in the activation and maintenance of nutrient transport in chick embryo fibroblasts.
    Smith-Johannsen H; Perdue JF; Ramjeesingh M; Kahlenberg A
    J Supramol Struct; 1977; 7(1):37-48. PubMed ID: 564429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impermeant maleimides. Oriented probes of erythrocyte membrane proteins.
    Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7176-83. PubMed ID: 993209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance of the intact and reconstituted adipocyte hexose transport system to irreversible inhibition by sulfhydryl and amino reagents.
    Czech MP; Pillion DJ; Shanahan MF
    J Supramol Struct; 1978; 9(3):363-71. PubMed ID: 748681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transport in L6 rat myoblasts. II. The effects of sulfhydryl reagents.
    D'Amore T; Lo TC
    J Cell Physiol; 1986 Apr; 127(1):106-13. PubMed ID: 3007535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sulfhydryl modifying reagents on nonhormonal and hormonally regulated hexose transport in cultured human skin fibroblasts.
    Germinario RJ; Vlachopoulou F
    J Cell Physiol; 1987 Feb; 130(2):214-20. PubMed ID: 3546339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity.
    Borochov H; Abbott RE; Schachter D; Shinitzky M
    Biochemistry; 1979 Jan; 18(2):251-5. PubMed ID: 420782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The monosaccharide transport system of the human erythrocyte. Orientation upon reconstitution.
    Baldwin JM; Lienhard GE; Baldwin SA
    Biochim Biophys Acta; 1980 Jul; 599(2):699-714. PubMed ID: 7407110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring conformational change in the human erythrocyte glucose carrier: use of a fluorescent probe attached to an exofacial carrier sulfhydryl.
    May JM; Beechem JM
    Biochemistry; 1993 Mar; 32(11):2907-15. PubMed ID: 8457556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular response to oxidative stress at sulfhydryl group receptor sites on the erythrocyte membrane.
    Reglinski J; Hoey S; Smith WE; Sturrock RD
    J Biol Chem; 1988 Sep; 263(25):12360-6. PubMed ID: 3410845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of N-maleoylmethionine sulphone, a novel impermeant maleimide, and its use in the selective labelling of the erythrocyte glucose-transport system.
    Roberts SJ; Tanner MJ; Denton RM
    Biochem J; 1982 Jul; 205(1):139-45. PubMed ID: 7126174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective labeling of the erythrocyte hexose carrier with a maleimide derivative of glucosamine: relationship of an exofacial sulfhydryl to carrier conformation and structure.
    May JM
    Biochemistry; 1989 Feb; 28(4):1718-25. PubMed ID: 2719930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.