These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37174071)

  • 21. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning Capabilities for the Categorization of Microcalcification.
    Kumar Singh K; Kumar S; Antonakakis M; Moirogiorgou K; Deep A; Kashyap KL; Bajpai MK; Zervakis M
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcalcification detection based on wavelet domain hidden markov tree model: study for inclusion to computer aided diagnostic prompting system.
    Regentova E; Zhang L; Zheng J; Veni G
    Med Phys; 2007 Jun; 34(6):2206-19. PubMed ID: 17654922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity landscape image analysis using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Cheminform; 2020 May; 12(1):34. PubMed ID: 33431003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).
    Agnes SA; Anitha J; Pandian SIA; Peter JD
    J Med Syst; 2019 Dec; 44(1):30. PubMed ID: 31838610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesh-free based variational level set evolution for breast region segmentation and abnormality detection using mammograms.
    Kashyap KL; Bajpai MK; Khanna P; Giakos G
    Int J Numer Method Biomed Eng; 2018 Jan; 34(1):. PubMed ID: 28603939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breast ultrasound lesion classification based on image decomposition and transfer learning.
    Zhuang Z; Kang Y; Joseph Raj AN; Yuan Y; Ding W; Qiu S
    Med Phys; 2020 Dec; 47(12):6257-6269. PubMed ID: 33012047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of mammogram using two-dimensional discrete orthonormal S-transform for breast cancer detection.
    Beura S; Majhi B; Dash R; Roy S
    Healthc Technol Lett; 2015 Apr; 2(2):46-51. PubMed ID: 26609404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automated confirmatory system for analysis of mammograms.
    Peng W; Mayorga RV; Hussein EM
    Comput Methods Programs Biomed; 2016 Mar; 125():134-44. PubMed ID: 26742491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum and impulse noise filtering from breast mammogram images.
    Naveed N; Hussain A; Arfan Jaffar M; Choi TS
    Comput Methods Programs Biomed; 2012 Dec; 108(3):1062-9. PubMed ID: 22940136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A framework for breast cancer classification using Multi-DCNNs.
    Ragab DA; Attallah O; Sharkas M; Ren J; Marshall S
    Comput Biol Med; 2021 Apr; 131():104245. PubMed ID: 33556893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2017 Jul; 44(7):3726-3738. PubMed ID: 28477395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breast Cancer Detection in Mammogram Images Using K-Means++ Clustering Based on Cuckoo Search Optimization.
    Wisaeng K
    Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2016 Jan; 43(1):159. PubMed ID: 26745908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Hybrid Image Filtering Method for Computer-Aided Detection of Microcalcification Clusters in Mammograms.
    Zhang X; Homma N; Goto S; Kawasumi Y; Ishibashi T; Abe M; Sugita N; Yoshizawa M
    J Med Eng; 2013; 2013():615254. PubMed ID: 27006921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers.
    Bagher-Ebadian H; Siddiqui F; Liu C; Movsas B; Chetty IJ
    Med Phys; 2017 May; 44(5):1755-1770. PubMed ID: 28261818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BRMI-Net: Deep Learning Features and Flower Pollination-Controlled Regula Falsi-Based Feature Selection Framework for Breast Cancer Recognition in Mammography Images.
    Rehman SU; Khan MA; Masood A; Almujally NA; Baili J; Alhaisoni M; Tariq U; Zhang YD
    Diagnostics (Basel); 2023 May; 13(9):. PubMed ID: 37175009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications.
    Loizidou K; Skouroumouni G; Pitris C; Nikolaou C
    Eur Radiol Exp; 2021 Sep; 5(1):40. PubMed ID: 34519867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning techniques on homological persistence features for prostate cancer diagnosis.
    Rammal A; Assaf R; Goupil A; Kacim M; Vrabie V
    BMC Bioinformatics; 2022 Nov; 23(1):476. PubMed ID: 36371184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples.
    Bose S; Das C; Banerjee A; Ghosh K; Chattopadhyay M; Chattopadhyay S; Barik A
    PeerJ Comput Sci; 2021; 7():e671. PubMed ID: 34616883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.