These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 37174671)
1. Toward the Analysis of Volatile Organic Compounds from Tomato Plants ( Nawrocka J; Szymczak K; Skwarek-Fadecka M; Małolepsza U Cells; 2023 Apr; 12(9):. PubMed ID: 37174671 [TBL] [Abstract][Full Text] [Related]
2. Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Nawrocka J; Szymczak K; Maćkowiak A; Skwarek-Fadecka M; Małolepsza U Cells; 2022 Sep; 11(19):. PubMed ID: 36231012 [TBL] [Abstract][Full Text] [Related]
3. Combined Use of Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417 [TBL] [Abstract][Full Text] [Related]
4. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp. Fan QS; Lin HJ; Hu YJ; Jin J; Yan HH; Zhang RQ Biotechnol Lett; 2024 Oct; 46(5):751-766. PubMed ID: 38811460 [TBL] [Abstract][Full Text] [Related]
5. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM; Mehari ZH; Rav-David D; Elad Y Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252 [TBL] [Abstract][Full Text] [Related]
6. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry. Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769 [TBL] [Abstract][Full Text] [Related]
7. Promotion of tomato growth by the volatiles produced by the hypovirulent strain QT5-19 of the plant gray mold fungus Botrytis cinerea. Kamaruzzaman M; Wang Z; Wu M; Yang L; Han Y; Li G; Zhang J Microbiol Res; 2021 Jun; 247():126731. PubMed ID: 33676312 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs. Gielen S; Aerts R; Seels B Commun Agric Appl Biol Sci; 2004; 69(4):631-9. PubMed ID: 15756850 [TBL] [Abstract][Full Text] [Related]
9. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443 [TBL] [Abstract][Full Text] [Related]
10. Biocontrol Potential of Trichoderma afroharzianum TM24 Against Grey Mould on Tomato Plants. Zhao J; Liu T; Zhang D; Wu H; Zhang T; Dong D Curr Microbiol; 2021 Dec; 78(12):4115-4126. PubMed ID: 34668992 [TBL] [Abstract][Full Text] [Related]
11. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. Rao Y; Zeng L; Jiang H; Mei L; Wang Y BMC Microbiol; 2022 Apr; 22(1):88. PubMed ID: 35382732 [TBL] [Abstract][Full Text] [Related]
12. A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea. Wang R; Chen D; Khan RAA; Cui J; Hou J; Liu T FEMS Microbiol Lett; 2021 Nov; 368(20):. PubMed ID: 34751779 [TBL] [Abstract][Full Text] [Related]
13. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Jansen RM; Miebach M; Kleist E; van Henten EJ; Wildt J Plant Biol (Stuttg); 2009 Nov; 11(6):859-68. PubMed ID: 19796363 [TBL] [Abstract][Full Text] [Related]
14. Biological Control and Plant Growth Promotion by Volatile Organic Compounds of You J; Li G; Li C; Zhu L; Yang H; Song R; Gu W J Fungi (Basel); 2022 Jan; 8(2):. PubMed ID: 35205885 [No Abstract] [Full Text] [Related]
15. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Lin Y; Ruan H; Akutse KS; Lai B; Lin Y; Hou Y; Zhong F J Agric Food Chem; 2019 Dec; 67(49):13706-13717. PubMed ID: 31693347 [TBL] [Abstract][Full Text] [Related]
16. Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Fiume F; Fiume G Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837 [TBL] [Abstract][Full Text] [Related]
17. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. Di Francesco A; Zajc J; Gunde-Cimerman N; Aprea E; Gasperi F; Placì N; Caruso F; Baraldi E World J Microbiol Biotechnol; 2020 Oct; 36(11):171. PubMed ID: 33067644 [TBL] [Abstract][Full Text] [Related]
18. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Salas-Marina MA; Isordia-Jasso MI; Islas-Osuna MA; Delgado-Sánchez P; Jiménez-Bremont JF; Rodríguez-Kessler M; Rosales-Saavedra MT; Herrera-Estrella A; Casas-Flores S Front Plant Sci; 2015; 6():77. PubMed ID: 25755658 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Volatile Organic Compounds Produced by Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464 [TBL] [Abstract][Full Text] [Related]
20. Interaction with the entomopathogenic fungus Russo A; Winkler JB; Ghirardo A; Monti MM; Pollastri S; Ruocco M; Schnitzler JP; Loreto F Front Plant Sci; 2023; 14():1309747. PubMed ID: 38173923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]