These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37175080)
21. Nickel -supported PdM (M = Au and Ag) nanodendrites as formate oxidation (electro)catalytic anodes for direct fuel cells and hydrogen generation at room temperature. Pan B; Shan S; Wang J; Tang Q; Guo L; Jin T; Wang Q; Li Z; Usman M; Chen F Nanoscale; 2023 Apr; 15(15):7032-7043. PubMed ID: 36974475 [TBL] [Abstract][Full Text] [Related]
23. Porous PdAg alloy nanostructures with a concave surface for efficient electrocatalytic methanol oxidation. Wang H; Zhou T; Mao Q; Wang S; Wang Z; Xu Y; Li X; Deng K; Wang L Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34030138 [TBL] [Abstract][Full Text] [Related]
24. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO Mori K; Sano T; Kobayashi H; Yamashita H J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642 [TBL] [Abstract][Full Text] [Related]
25. Facile synthesis of N-doped graphene supported porous cobalt molybdenum oxynitride nanodendrites for the oxygen reduction reaction. Sharma K; Hui D; Kim NH; Lee JH Nanoscale; 2019 Jan; 11(3):1205-1216. PubMed ID: 30601506 [TBL] [Abstract][Full Text] [Related]
26. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid. Bao J; Dou M; Liu H; Wang F; Liu J; Li Z; Ji J ACS Appl Mater Interfaces; 2015 Jul; 7(28):15223-9. PubMed ID: 26132867 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of Supported AuPt Alloy Nanocrystals with Enhanced Electrocatalytic Activity for Formic Acid Oxidation through Conversion Chemistry of Layer-Deposited Pt(2+) on Au Nanocrystals. Kim SH; Jeong H; Kim J; Lee IS Small; 2015 Oct; 11(37):4884-93. PubMed ID: 26136254 [TBL] [Abstract][Full Text] [Related]
28. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway. Goswami C; Saikia H; Jyoti Borah B; Jyoti Kalita M; Tada K; Tanaka S; Bharali P J Colloid Interface Sci; 2021 Apr; 587():446-456. PubMed ID: 33383434 [TBL] [Abstract][Full Text] [Related]
29. Rhodium Nanoparticles/F-Doped Graphene Composites as Multifunctional Electrocatalyst Superior to Pt/C for Hydrogen Evolution and Formic Acid Oxidation Reaction. Shen W; Ge L; Sun Y; Liao F; Xu L; Dang Q; Kang Z; Shao M ACS Appl Mater Interfaces; 2018 Oct; 10(39):33153-33161. PubMed ID: 30193058 [TBL] [Abstract][Full Text] [Related]
30. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid. Zhao Q; Ge C; Cai Y; Qiao Q; Jia X J Colloid Interface Sci; 2018 Mar; 514():425-432. PubMed ID: 29278798 [TBL] [Abstract][Full Text] [Related]
31. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation. Bin D; Yang B; Zhang K; Wang C; Wang J; Zhong J; Feng Y; Guo J; Du Y Chemistry; 2016 Nov; 22(46):16642-16647. PubMed ID: 27723142 [TBL] [Abstract][Full Text] [Related]
32. Polyhedral Palladium-Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction. Fu GT; Liu C; Zhang Q; Chen Y; Tang YW Sci Rep; 2015 Sep; 5():13703. PubMed ID: 26329555 [TBL] [Abstract][Full Text] [Related]
33. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway. Jiang X; Yan X; Ren W; Jia Y; Chen J; Sun D; Xu L; Tang Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):31076-31082. PubMed ID: 27786447 [TBL] [Abstract][Full Text] [Related]
34. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Zhang Y; Qiao M; Huang Y; Zou Y; Liu Z; Tao L; Li Y; Dong CL; Wang S Research (Wash D C); 2020; 2020():5487237. PubMed ID: 32266330 [TBL] [Abstract][Full Text] [Related]
35. Facile dual tuning of PtPdP nanoparticles by metal-nonmetal co-incorporation and dendritic engineering for enhanced formic acid oxidation electrocatalysis. Li C; Xu Y; Yu H; Deng K; Liu S; Wang Z; Li X; Wang L; Wang H Nanotechnology; 2020 Jan; 31(4):045401. PubMed ID: 31574496 [TBL] [Abstract][Full Text] [Related]
36. Catalyst Composites of Palladium and N-Doped Carbon Quantum Dots-Decorated Silica and Reduced Graphene Oxide for Enhancement of Direct Formic Acid Fuel Cells. Saipanya S; Waenkaew P; Maturost S; Pongpichayakul N; Promsawan N; Kuimalee S; Namsar O; Income K; Kuntalue B; Themsirimongkon S; Jakmunee J ACS Omega; 2022 May; 7(21):17741-17755. PubMed ID: 35664576 [TBL] [Abstract][Full Text] [Related]
37. Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Sun Y; Huang B; Xu N; Li Y; Luo M; Li C; Qin Y; Wang L; Guo S Sci Bull (Beijing); 2019 Jan; 64(1):54-62. PubMed ID: 36659523 [TBL] [Abstract][Full Text] [Related]
38. Clean Electrochemical Synthesis of Pd-Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Liu J; Li F; Zhong C; Hu W Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208094 [TBL] [Abstract][Full Text] [Related]
39. Strain effect in Pd@PdAg twinned nanocrystals towards ethanol oxidation electrocatalysis. Huang J; Liu Q; Yan Y; Qian N; Wu X; Ji L; Li X; Li J; Yang D; Zhang H Nanoscale Adv; 2021 Dec; 4(1):111-116. PubMed ID: 36132945 [TBL] [Abstract][Full Text] [Related]
40. Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution. Zhang XF; Chen Y; Zhang L; Wang AJ; Wu LJ; Wang ZG; Feng JJ J Colloid Interface Sci; 2018 Apr; 516():325-331. PubMed ID: 29408120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]