These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 37175317)
41. Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. Hájek T; Jandera P; Staňková M; Česla P J Chromatogr A; 2016 May; 1446():91-102. PubMed ID: 27083260 [TBL] [Abstract][Full Text] [Related]
42. Hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry: effect of electrospray ionization source geometry on sensitivity. Periat A; Kohler I; Bugey A; Bieri S; Versace F; Staub C; Guillarme D J Chromatogr A; 2014 Aug; 1356():211-20. PubMed ID: 25017394 [TBL] [Abstract][Full Text] [Related]
43. [Stationary phases for hydrophilic interaction liquid chromatography and their applications in separation of traditional Chinese medicines]. Guo Z; Zhang X; Xu Q; Liang X Se Pu; 2009 Sep; 27(5):675-81. PubMed ID: 20073204 [TBL] [Abstract][Full Text] [Related]
44. Towards multimodal HPLC separations on humic acid-bonded aminopropyl silica: RPLC and HILIC behavior. Gezici O; Kara H Talanta; 2011 Sep; 85(3):1472-82. PubMed ID: 21807212 [TBL] [Abstract][Full Text] [Related]
45. [Preparation and evaluation of hydrophilic interaction/reversed-phase mixed-mode chromatographic packing based on polylsilsesquioxane microspheres]. Lü Q Se Pu; 2017 Sep; 35(9):927-933. PubMed ID: 29048849 [TBL] [Abstract][Full Text] [Related]
46. A detailed evaluation of the advantages and limitations of online RP-LC×HILIC compared to HILIC×RP-LC for phenolic analysis. Muller M; de Villiers A J Chromatogr A; 2023 Mar; 1692():463843. PubMed ID: 36780845 [TBL] [Abstract][Full Text] [Related]
47. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Tang DQ; Zou L; Yin XX; Ong CN Mass Spectrom Rev; 2016 Sep; 35(5):574-600. PubMed ID: 25284160 [TBL] [Abstract][Full Text] [Related]
48. Computer-aided gradient optimization of hydrophilic interaction liquid chromatographic separations of intact proteins and protein glycoforms. van Schaick G; Pirok BWJ; Haselberg R; Somsen GW; Gargano AFG J Chromatogr A; 2019 Aug; 1598():67-76. PubMed ID: 31104847 [TBL] [Abstract][Full Text] [Related]
49. Volume and composition of semi-adsorbed stationary phases in hydrophilic interaction liquid chromatography. Comparison of water adsorption in common stationary phases and eluents. Redón L; Subirats X; Rosés M J Chromatogr A; 2021 Oct; 1656():462543. PubMed ID: 34571282 [TBL] [Abstract][Full Text] [Related]
50. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. Robles-Molina J; Gilbert-López B; García-Reyes JF; Molina-Díaz A J Chromatogr A; 2017 Sep; 1517():108-116. PubMed ID: 28847580 [TBL] [Abstract][Full Text] [Related]
51. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Contrepois K; Jiang L; Snyder M Mol Cell Proteomics; 2015 Jun; 14(6):1684-95. PubMed ID: 25787789 [TBL] [Abstract][Full Text] [Related]
52. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Naser FJ; Mahieu NG; Wang L; Spalding JL; Johnson SL; Patti GJ Anal Bioanal Chem; 2018 Feb; 410(4):1287-1297. PubMed ID: 29256075 [TBL] [Abstract][Full Text] [Related]
54. [Separation and purification of the components in Jia Y; Cai J; Xin H; Feng J; Fu Y; Fu Q; Jin Y Se Pu; 2017 Jun; 35(6):650-655. PubMed ID: 29048793 [TBL] [Abstract][Full Text] [Related]
55. Sense and nonsense of shifting gradients in on-line comprehensive reversed-phase LC × reversed-phase LC. Chapel S; Rouvière F; Heinisch S J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Dec; 1212():123512. PubMed ID: 36283261 [TBL] [Abstract][Full Text] [Related]
56. Ganoderma species discrimination by dual-mode chromatographic fingerprinting: a study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography. Chen Y; Bicker W; Wu J; Xie MY; Lindner W J Chromatogr A; 2010 Feb; 1217(8):1255-65. PubMed ID: 20031144 [TBL] [Abstract][Full Text] [Related]
57. Hydrophilic Interaction Liquid Chromatography at Subzero Temperature for Hydrogen-Deuterium Exchange Mass Spectrometry. Anderson KW; Hudgens JW J Am Soc Mass Spectrom; 2023 Dec; 34(12):2672-2679. PubMed ID: 37930109 [TBL] [Abstract][Full Text] [Related]
58. Detailed comparison of in-house developed and commercially available heart-cutting and selective comprehensive two-dimensional liquid chromatography systems. Pardon M; Reis R; de Witte P; Chapel S; Cabooter D J Chromatogr A; 2024 Jan; 1713():464565. PubMed ID: 38096685 [TBL] [Abstract][Full Text] [Related]
59. Preparation and evaluation of two silica-based hydrophilic-hydrophobic and acid-base balanced stationary phases via in-situ surface polymerization. Fan C; Chen J; Li H; Quan K; Qiu H J Chromatogr A; 2022 Mar; 1667():462912. PubMed ID: 35219109 [TBL] [Abstract][Full Text] [Related]
60. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]