BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 37175592)

  • 1. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury.
    Shimizu N; Saito T; Wada N; Hashimoto M; Shimizu T; Kwon J; Cho KJ; Saito M; Karnup S; de Groat WC; Yoshimura N
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Knowledge and Novel Frontiers in Lower Urinary Tract Dysfunction after Spinal Cord Injury: Basic Research Perspectives.
    Wada N; Karnup S; Kadekawa K; Shimizu N; Kwon J; Shimizu T; Gotoh D; Kakizaki H; de Groat WC; Yoshimura N
    Urol Sci; 2022; 33(3):101-113. PubMed ID: 36177249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury.
    de Groat WC; Yoshimura N
    Prog Brain Res; 2006; 152():59-84. PubMed ID: 16198694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in reflex pathways to the lower urinary tract following spinal cord injury.
    de Groat WC; Yoshimura N
    Exp Neurol; 2012 May; 235(1):123-32. PubMed ID: 21596038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models.
    von Siebenthal M; Akshay A; Besic M; Schneider MP; Hashemi Gheinani A; Burkhard FC; Monastyrskaya K
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice.
    Kadekawa K; Majima T; Shimizu T; Wada N; de Groat WC; Kanai AJ; Goto M; Yoshiyama M; Sugaya K; Yoshimura N
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F796-F804. PubMed ID: 28637786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury.
    Hamid R; Averbeck MA; Chiang H; Garcia A; Al Mousa RT; Oh SJ; Patel A; Plata M; Del Popolo G
    World J Urol; 2018 Oct; 36(10):1517-1527. PubMed ID: 29752515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic receptor targets for lower urinary tract dysfunction.
    Yoshimura N; Kaiho Y; Miyazato M; Yunoki T; Tai C; Chancellor MB; Tyagi P
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):437-48. PubMed ID: 18034230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative control of the lower urinary tract: preclinical perspective.
    de Groat WC
    Br J Pharmacol; 2006 Feb; 147 Suppl 2(Suppl 2):S25-40. PubMed ID: 16465182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2010; 50(1):3-27. PubMed ID: 20349554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of lower urinary tract function by a selective serotonin 5-HT
    Lin CY; Sparks A; Lee YS
    Exp Neurol; 2020 Oct; 332():113395. PubMed ID: 32615138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats.
    Cheng CL; de Groat WC
    Exp Neurol; 2004 Jun; 187(2):445-54. PubMed ID: 15144870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bladder and urethral sphincter responses evoked by microstimulation of S2 sacral spinal cord in spinal cord intact and chronic spinal cord injured cats.
    Tai C; Booth AM; de Groat WC; Roppolo JR
    Exp Neurol; 2004 Nov; 190(1):171-83. PubMed ID: 15473990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury.
    Vizzard MA
    Prog Brain Res; 2006; 152():97-115. PubMed ID: 16198696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neurologic basis for the overactive bladder.
    de Groat WC
    Urology; 1997 Dec; 50(6A Suppl):36-52; discussion 53-6. PubMed ID: 9426749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgical management of functional bladder outlet obstruction in adults with neurogenic bladder dysfunction.
    Utomo E; Groen J; Blok BF
    Cochrane Database Syst Rev; 2014 May; 2014(5):CD004927. PubMed ID: 24859260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting p75 neurotrophin receptors ameliorates spinal cord injury-induced detrusor sphincter dyssynergia in mice.
    Zabbarova IV; Ikeda Y; Carder EJ; Wipf P; Wolf-Johnston AS; Birder LA; Yoshimura N; Getchell SE; Almansoori K; Tyagi P; Fry CH; Drake MJ; Kanai AJ
    Neurourol Urodyn; 2018 Nov; 37(8):2452-2461. PubMed ID: 29806700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in afferent activity after spinal cord injury.
    de Groat WC; Yoshimura N
    Neurourol Urodyn; 2010; 29(1):63-76. PubMed ID: 20025033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering Spinal Endogenous Dopaminergic Mechanisms That Modulate Micturition Reflexes in Rats with Spinal Cord Injury.
    Hou S; DeFinis JH; Daugherty SL; Tang C; Weinberger J; de Groat WC
    eNeuro; 2021; 8(4):. PubMed ID: 34244339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-World Data Regarding Satisfaction to Botulinum Toxin A Injection into the Urethral Sphincter and Further Bladder Management for Voiding Dysfunction among Patients with Spinal Cord Injury and Voiding Dysfunction.
    Lee CL; Jhang JF; Jiang YH; Kuo HC
    Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.