These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37175815)

  • 1. On the Roles of the Nuclear Non-Coding RNA-Dependent Membrane-Less Organelles in the Cellular Stress Response.
    Gavrilova AA; Fefilova AS; Vishnyakov IE; Kuznetsova IM; Turoverov KK; Uversky VN; Fonin AV
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleolar- and Nuclear-Stress-Induced Membrane-Less Organelles: A Proteome Analysis through the Prism of Liquid-Liquid Phase Separation.
    Mokin YI; Gavrilova AA; Fefilova AS; Kuznetsova IM; Turoverov KK; Uversky VN; Fonin AV
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reorganization of Cell Compartmentalization Induced by Stress.
    Fefilova AS; Antifeeva IA; Gavrilova AA; Turoverov KK; Kuznetsova IM; Fonin AV
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?
    Huai Y; Mao W; Wang X; Lin X; Li Y; Chen Z; Qian A
    Biosci Trends; 2022 Dec; 16(6):389-404. PubMed ID: 36464283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAs, Phase Separation, and Membrane-Less Organelles: Are Post-Transcriptional Modifications Modulating Organelle Dynamics?
    Drino A; Schaefer MR
    Bioessays; 2018 Dec; 40(12):e1800085. PubMed ID: 30370622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder.
    Uversky VN
    Curr Opin Struct Biol; 2017 Jun; 44():18-30. PubMed ID: 27838525
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Bianchi G; Brocca S; Longhi S; Uversky VN
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically Disordered Proteome of Human Membrane-Less Organelles.
    Darling AL; Liu Y; Oldfield CJ; Uversky VN
    Proteomics; 2018 Mar; 18(5-6):e1700193. PubMed ID: 29068531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programming protein phase-separation employing a modular library of intrinsically disordered precision block copolymer-like proteins creating dynamic cytoplasmatic compartmentalization.
    Huber MC; Schreiber A; Stühn LG; Schiller SM
    Biomaterials; 2023 Aug; 299():122165. PubMed ID: 37290157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation.
    Turoverov KK; Kuznetsova IM; Fonin AV; Darling AL; Zaslavsky BY; Uversky VN
    Trends Biochem Sci; 2019 Aug; 44(8):716-728. PubMed ID: 31023505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Latest Findings on Phase Separation of Cytomechanical Proteins].
    Luo G; Zhou C
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):19-23. PubMed ID: 38322526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membraneless nuclear organelles and the search for phases within phases.
    Sawyer IA; Sturgill D; Dundr M
    Wiley Interdiscip Rev RNA; 2019 Mar; 10(2):e1514. PubMed ID: 30362243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles.
    Uversky VN
    Adv Colloid Interface Sci; 2017 Jan; 239():97-114. PubMed ID: 27291647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid phase separation: Orchestrating cell signaling through time and space.
    Su Q; Mehta S; Zhang J
    Mol Cell; 2021 Oct; 81(20):4137-4146. PubMed ID: 34619090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-granules, P-bodies, and cell aging: A bioinformatics study.
    Mokin YI; Ilyinsky NS; Nesterov SV; Smirnov EY; Sergeeva OS; Romanovich AE; Kuznetsova IM; Turoverov KK; Uversky VN; Fonin AV
    Biochem Biophys Res Commun; 2024 Jan; 694():149404. PubMed ID: 38147698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A guide to membraneless organelles and their various roles in gene regulation.
    Hirose T; Ninomiya K; Nakagawa S; Yamazaki T
    Nat Rev Mol Cell Biol; 2023 Apr; 24(4):288-304. PubMed ID: 36424481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.