BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37175997)

  • 21. Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature.
    Paddenberg R; Goldenberg A; Faulhammer P; Braun-Dullaeus RC; Kummer W
    Adv Exp Med Biol; 2003; 536():163-9. PubMed ID: 14635663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.
    Kita K; Takamiya S; Furushima R; Ma YC; Suzuki H; Ozawa T; Oya H
    Biochim Biophys Acta; 1988 Sep; 935(2):130-40. PubMed ID: 2843227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space.
    Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM
    Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.
    Kluckova K; Sticha M; Cerny J; Mracek T; Dong L; Drahota Z; Gottlieb E; Neuzil J; Rohlena J
    Cell Death Dis; 2015 May; 6(5):e1749. PubMed ID: 25950479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain.
    Selivanov VA; Votyakova TV; Pivtoraiko VN; Zeak J; Sukhomlin T; Trucco M; Roca J; Cascante M
    PLoS Comput Biol; 2011 Mar; 7(3):e1001115. PubMed ID: 21483483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes.
    Maklashina E; Cecchini G; Dikanov SA
    Biochim Biophys Acta; 2013 May; 1827(5):668-78. PubMed ID: 23396003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning.
    Dröse S
    Biochim Biophys Acta; 2013 May; 1827(5):578-87. PubMed ID: 23333272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of fumarate reductases and succinate dehydrogenases based upon their contrasting behaviour in the reduced benzylviologen/fumarate assay.
    Ackrell BA; Armstrong FA; Cochran B; Sucheta A; Yu T
    FEBS Lett; 1993 Jul; 326(1-3):92-4. PubMed ID: 8325393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase.
    Schnorpfeil M; Janausch IG; Biel S; Kröger A; Unden G
    Eur J Biochem; 2001 May; 268(10):3069-74. PubMed ID: 11358526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.
    Szibor M; Gainutdinov T; Fernandez-Vizarra E; Dufour E; Gizatullina Z; Debska-Vielhaber G; Heidler J; Wittig I; Viscomi C; Gellerich F; Moore AL
    Biochim Biophys Acta Bioenerg; 2020 Feb; 1861(2):148137. PubMed ID: 31825809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Architecture of succinate dehydrogenase and reactive oxygen species generation.
    Yankovskaya V; Horsefield R; Törnroth S; Luna-Chavez C; Miyoshi H; Léger C; Byrne B; Cecchini G; Iwata S
    Science; 2003 Jan; 299(5607):700-4. PubMed ID: 12560550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria.
    Robinson KM; Rothery RA; Weiner JH; Lemire BD
    Eur J Biochem; 1994 Jun; 222(3):983-90. PubMed ID: 8026509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II.
    Dong LF; Low P; Dyason JC; Wang XF; Prochazka L; Witting PK; Freeman R; Swettenham E; Valis K; Liu J; Zobalova R; Turanek J; Spitz DR; Domann FE; Scheffler IE; Ralph SJ; Neuzil J
    Oncogene; 2008 Jul; 27(31):4324-35. PubMed ID: 18372923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558.
    Takamiya S; Furushima R; Oya H
    Biochim Biophys Acta; 1986 Jan; 848(1):99-107. PubMed ID: 3753651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The electron transport chain in anaerobically functioning eukaryotes.
    Tielens AG; Van Hellemond JJ
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):71-8. PubMed ID: 9693724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria.
    Köhler P; Bachmann R
    Mol Biochem Parasitol; 1980 Apr; 1(2):75-90. PubMed ID: 7442710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fumarate reductase and succinate oxidase activity of Escherichia coli complex II homologs are perturbed differently by mutation of the flavin binding domain.
    Maklashina E; Iverson TM; Sher Y; Kotlyar V; Andréll J; Mirza O; Hudson JM; Armstrong FA; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2006 Apr; 281(16):11357-65. PubMed ID: 16484232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.