These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37176254)
1. Prediction of Water Resistance of Magnesium Oxychloride Cement Concrete Based upon Hybrid-BP Neural Network. Wang P; Qiao H; Xue C; Feng Q Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176254 [TBL] [Abstract][Full Text] [Related]
2. Advanced Predictive Modeling of Concrete Compressive Strength and Slump Characteristics: A Comparative Evaluation of BPNN, SVM, and RF Models Optimized via PSO. Chen X; Zhang X; Chen WZ Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410362 [TBL] [Abstract][Full Text] [Related]
3. Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Zhou J; Chen Y; Chen H; Khandelwal M; Monjezi M; Peng K Front Public Health; 2023; 11():1119580. PubMed ID: 36761136 [TBL] [Abstract][Full Text] [Related]
4. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm. Huang XY; Wu KY; Wang S; Lu T; Lu YF; Deng WC; Li HM Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683231 [TBL] [Abstract][Full Text] [Related]
5. Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application. Wang W; Liang R; Qi Y; Cui X; Liu J Sci Rep; 2024 Jan; 14(1):5. PubMed ID: 38168106 [TBL] [Abstract][Full Text] [Related]
6. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete. Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542 [TBL] [Abstract][Full Text] [Related]
7. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm. Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647 [TBL] [Abstract][Full Text] [Related]
8. Modeling the influence of bacteria concentration on the mechanical properties of self-healing concrete (SHC) for sustainable bio-concrete structures. Onyelowe KC; Adam AFH; Ulloa N; Garcia C; Andrade Valle AI; Zúñiga Rodríguez MG; Zarate Villacres AN; Shakeri J; Anyaogu L; Alimoradijazi M; Ganasen N Sci Rep; 2024 Apr; 14(1):8414. PubMed ID: 38600143 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Bu L; Du G; Hou Q Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839 [TBL] [Abstract][Full Text] [Related]
10. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Teferra DM; Ngoo LMH; Nyakoe GN Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286 [TBL] [Abstract][Full Text] [Related]
11. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869 [TBL] [Abstract][Full Text] [Related]
12. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416 [TBL] [Abstract][Full Text] [Related]
13. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
14. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network. Du G; Bu L; Hou Q; Zhou J; Lu B PLoS One; 2021; 16(5):e0250795. PubMed ID: 33939736 [TBL] [Abstract][Full Text] [Related]
15. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment. Latif SD Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396 [TBL] [Abstract][Full Text] [Related]
16. Compressive Strength Prediction of Rice Husk Ash Concrete Using a Hybrid Artificial Neural Network Model. Li C; Mei X; Dias D; Cui Z; Zhou J Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109970 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm. Ahmad A; Farooq F; Niewiadomski P; Ostrowski K; Akbar A; Aslam F; Alyousef R Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567526 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Dao DV; Ly HB; Trinh SH; Le TT; Pham BT Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566 [TBL] [Abstract][Full Text] [Related]
19. Artificial Neural Network Model for Predicting Mechanical Strengths of Economical Ultra-High-Performance Concrete Containing Coarse Aggregates: Development and Parametric Analysis. Li L; Gao Y; Dong X; Han Y Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203086 [TBL] [Abstract][Full Text] [Related]
20. Concrete Strength Prediction Using Different Machine Learning Processes: Effect of Slag, Fly Ash and Superplasticizer. Qi C; Huang B; Wu M; Wang K; Yang S; Li G Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]