These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37176255)

  • 21. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.
    Cartuxo F; de Brito J; Evangelista L; Jiménez JR; Ledesma EF
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser scanning confocal microscopy for in situ monitoring of alkali-silica reaction.
    Collins CL; Ideker JH; Kurtis KE
    J Microsc; 2004 Feb; 213(2):149-57. PubMed ID: 14731298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Glinicki MA
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoscale Modeling Study on Mechanical Deterioration of Alkali-Aggregate Reaction-Affected Concrete.
    Wang W; Wang J; Wang J; He J; Pan J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nano-scale structure and mechanical properties of ASR products under saturated and dry conditions.
    Wu H; Pan J; Wang J
    Sci Rep; 2020 Jun; 10(1):9187. PubMed ID: 32514085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression.
    Geng G; Shi Z; Leemann A; Glazyrin K; Kleppe A; Daisenberger D; Churakov S; Lothenbach B; Wieland E; Dähn R
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Aug; 76(Pt 4):674-682. PubMed ID: 32831286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Alkali-Silica Reactivity of Aggregates by Concrete Expansion Tests in Alkaline Solutions at 38 °C.
    Bavasso I; Costa U; Mangialardi T; Paolini AE
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of paste composition, aggregate mineralogy and temperature on the pore solution composition and the extent of ASR expansion.
    Bagheri M; Lothenbach B; Scrivener K
    Mater Struct; 2022; 55(7):192. PubMed ID: 36042909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expansion of Dolomitic Rocks in TMAH and NaOH Solutions and Its Root Causes.
    Yuan H; Deng M; Chen B; Chen W; Mao Z
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate.
    Liu S; Wang S; Tang W; Hu N; Wei J
    Materials (Basel); 2015 Oct; 8(10):6849-6862. PubMed ID: 28793603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alkali-silica Reaction Elimination Potential of High-Performance Concrete Containing Glass Powder.
    Mariaková D; Mocová KA; Fořtová K; Pavlů T; Hájek P
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic Modulus of the Alkali-Silica Reaction Rim in a Simplified Calcium-Alkali-Silicate System Determined by Nano-Indentation.
    Zheng K; Lukovic M; De Schutter G; Ye G; Taerwe L
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test.
    Shin JH; Struble LJ; Kirkpatrick RJ
    Materials (Basel); 2015 Dec; 8(12):8292-8303. PubMed ID: 28793711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of LiNO₃ on Expansion of Alkali⁻Silica Reaction in Rock Prisms and Concrete Microbars Prepared by Sandstone.
    Liu J; Yu L; Deng M
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30970596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.
    Topçu IB; Boğa AR; Bilir T
    Waste Manag; 2008; 28(5):878-84. PubMed ID: 17570652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The presence of ettringite in concrete affected by alkali-silica reaction and its potential use as recycled aggregate.
    Piersanti M; Shehata MH
    J Microsc; 2022 May; 286(2):168-173. PubMed ID: 35218226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between Degree of Deformation in Quartz and Silica Dissolution for the Development of Alkali-Silica Reaction in Concrete.
    Tiecher F; Gomes MEB; Dal Molin DCC; Hasparyk NP; Monteiro PJM
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28869559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement in Durability and Mechanical Performance of Concrete Exposed to Aggressive Environments by Using Polymer.
    Idrees M; Akbar A; Saeed F; Saleem H; Hussian T; Vatin NI
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring of Ion Mobility in the Cement Matrix to Establish Sensitivity to the ASR Caused by External Sources.
    Marko M; Hrubý P; Janča M; Kříkala J; Hajzler J; Šoukal F; Vojtíšek J; Doležal M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.