These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37176285)

  • 1. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory.
    Wang J; Shen H
    J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free Vibrations of Bernoulli-Euler Nanobeams with Point Mass Interacting with Heavy Fluid Using Nonlocal Elasticity.
    Barretta R; Čanađija M; Marotti de Sciarra F; Skoblar A
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on the buckling and dynamics of diving-inspired systems when entering water.
    Zimmerman S; Abdelkefi A
    Bioinspir Biomim; 2020 Mar; 15(3):036015. PubMed ID: 32066135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity.
    Ahmad H; Abouelregal AE; Benhamed M; Alotaibi MF; Jendoubi A
    Sci Rep; 2022 Feb; 12(1):1894. PubMed ID: 35115646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Generalized Model for Curved Nanobeams Incorporating Surface Energy.
    Khater ME
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects.
    Yan Z; Jiang LY
    Nanotechnology; 2011 Jun; 22(24):245703. PubMed ID: 21508448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of the vibrational behavior of various beam models with different foundation designs.
    Kanwal G; Ahmed N; Nawaz R
    Heliyon; 2024 Mar; 10(5):e26491. PubMed ID: 38434382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-mechanical coupling band gaps of a piezoelectric phononic crystal Timoshenko nanobeam with surface effects.
    Qian D; Wu J; He F
    Ultrasonics; 2021 Jan; 109():106225. PubMed ID: 32977292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the chaotic and hyper-chaotic dynamics of nanobeams with low shear stiffness.
    Yakovleva TV; Awrejcewicz J; Kruzhilin VS; Krysko VA
    Chaos; 2021 Feb; 31(2):023107. PubMed ID: 33653059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-Based FEM in the Problem of Bending of Euler-Bernoulli and Timoshenko Beams Resting on Elastic Foundation.
    Więckowski Z; Świątkiewicz P
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods.
    Ragb O; Mohamed M; Matbuly MS
    Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobeams with Internal Discontinuities: A Local/Nonlocal Approach.
    Scorza D; Vantadori S; Luciano R
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration and length-dependent flexural rigidity of protein microtubules using higher order shear deformation theory.
    Tounsi A; Heireche H; Benhassaini H; Missouri M
    J Theor Biol; 2010 Sep; 266(2):250-5. PubMed ID: 20609368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.