BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37176335)

  • 41. Preparation and Electromagnetic Wave Absorption Properties of N-Doped SiC Nanowires.
    Shi R; Liu Z; Liu W; Kuang J
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of hierarchical reduced graphene oxide decorated with core-shell Fe
    Dong F; Dai B; Zhang H; Shi Y; Zhao R; Ding X; Wang H; Li T; Ma M; Ma Y
    J Colloid Interface Sci; 2023 Nov; 649():943-954. PubMed ID: 37392684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-performance microwave absorption of MOF-derived Co
    Lyu L; Zheng S; Wang F; Liu Y; Liu J
    J Colloid Interface Sci; 2021 Nov; 602():197-206. PubMed ID: 34126501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti
    Liang L; Yang R; Han G; Feng Y; Zhao B; Zhang R; Wang Y; Liu C
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2644-2654. PubMed ID: 31854182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of flowerlike vanadium diselenide microspheres for efficient electromagnetic wave absorption.
    Wang W; Zhang X; Wang W; Xue Y; Sheng D; Xie M; Xie A
    Nanotechnology; 2024 May; 35(30):. PubMed ID: 38653210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of nitrogen-doped reduced graphene oxide/cobalt-zinc ferrite composite aerogels with superior compression recovery and electromagnetic wave absorption performance.
    Shu R; Zhang J; Wu Y; Wan Z; Li X
    Nanoscale; 2021 Mar; 13(8):4485-4495. PubMed ID: 33599652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly dispersed Co/Co
    Lu Z; Wang Y; Cheng R; Yang L; Wang N
    J Colloid Interface Sci; 2023 May; 637():147-158. PubMed ID: 36689799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile constructing Ti
    Yan H; Guo Y; Bai X; Qi J; Lu H
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):1483-1491. PubMed ID: 37867074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable Impedance of Cobalt Loaded Carbon for Wide-Range Electromagnetic Wave Absorption.
    Wang X; Wang Z; Xi D; Li J; Li X; Bai X; Wang B; Low J; Xiong Y
    Small; 2024 Jun; 20(24):e2308970. PubMed ID: 38155111
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of conical hollow ZnS arrays vertically grown on carbon fibers for lightweight and broadband flexible absorbers.
    Ding J; Song K; Gong C; Wang C; Guo Y; Shi C; He F
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1287-1299. PubMed ID: 34583034
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of Hierarchical ZnFe
    Feng J; Hou Y; Wang Y; Li L
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14103-14111. PubMed ID: 28379680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved dispersion of SiC whisker in nano hydroxyapatite and effect of atmospheres on sintering of the SiC whisker reinforced nano hydroxyapatite composites.
    Zhao X; Yang J; Xin H; Wang X; Zhang L; He F; Liu Q; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():135-145. PubMed ID: 30033240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NiS
    Zhang Z; Lv Q; Chen Y; Yu H; Liu H; Cui G; Sun X; Li L
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Equivalent Substitute Strategy for Constructing 3D Ordered Porous Carbon Foams and Their Electromagnetic Attenuation Mechanism.
    Zhang M; Ling H; Wang T; Jiang Y; Song G; Zhao W; Zhao L; Cheng T; Xie Y; Guo Y; Zhao W; Yuan L; Meng A; Li Z
    Nanomicro Lett; 2022 Aug; 14(1):157. PubMed ID: 35916976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MOF-derived NiFe
    Zhang X; Jia Z; Zhang F; Xia Z; Zou J; Gu Z; Wu G
    J Colloid Interface Sci; 2022 Mar; 610():610-620. PubMed ID: 34848054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conductive Metal-Organic Frameworks with Tunable Dielectric Properties for Boosting Electromagnetic Wave Absorption.
    Zhang X; Tian XL; Qin Y; Qiao J; Pan F; Wu N; Wang C; Zhao S; Liu W; Cui J; Qian Z; Zhao M; Liu J; Zeng Z
    ACS Nano; 2023 Jul; 17(13):12510-12518. PubMed ID: 37350557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Situ Fabrication of Heterogeneous Co/Nanoporous Carbon Nano-Islands for Excellent Electromagnetic Wave Absorption.
    Li S; Sun Y; Zhang K; Jiang X; Yu H
    Small; 2024 May; 20(21):e2306990. PubMed ID: 38084443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cationic doping induced sulfur vacancy formation in polyionic sulfide for enhanced electromagnetic wave absorption.
    Hui S; Zhang L; Wu H
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):147-155. PubMed ID: 36152572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile Preparation of Snowflake-Like MnO
    Wei S; Wang X; Zheng Y; Chen T; Zhou C; Chen S; Liu J
    Chemistry; 2019 Jun; 25(32):7695-7701. PubMed ID: 30947364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption.
    Zhang H; Shi C; Jia Z; Liu X; Xu B; Zhang D; Wu G
    J Colloid Interface Sci; 2021 Feb; 584():382-394. PubMed ID: 33080500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.