These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 37176363)
1. Mineral Phase Reconstruction and Separation Behavior of Zinc and Iron from Zinc-Containing Dust. Xie Z; Li G; Guo Y; Wang S; Chen F; Yang L; Fu G; Jiang T Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176363 [TBL] [Abstract][Full Text] [Related]
2. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method. Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust. Pickles CA J Hazard Mater; 2010 Jul; 179(1-3):309-17. PubMed ID: 20356673 [TBL] [Abstract][Full Text] [Related]
4. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis. Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046 [TBL] [Abstract][Full Text] [Related]
5. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite. Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495 [TBL] [Abstract][Full Text] [Related]
6. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution. Miki T; Chairaksa-Fujimoto R; Maruyama K; Nagasaka T J Hazard Mater; 2016 Jan; 302():90-96. PubMed ID: 26448494 [TBL] [Abstract][Full Text] [Related]
7. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid. Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730 [TBL] [Abstract][Full Text] [Related]
8. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. Leclerc N; Meux E; Lecuire JM J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917 [TBL] [Abstract][Full Text] [Related]
9. A Study on the Mechanism and Kinetics of Ultrasound-Enhanced Sulfuric Acid Leaching for Zinc Extraction from Zinc Oxide Dust. Zheng X; Li S; Liu B; Zhang L; Ma A Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079349 [TBL] [Abstract][Full Text] [Related]
10. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. Ruiz O; Clemente C; Alonso M; Alguacil FJ J Hazard Mater; 2007 Mar; 141(1):33-6. PubMed ID: 16876937 [TBL] [Abstract][Full Text] [Related]
11. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent. Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184 [TBL] [Abstract][Full Text] [Related]
13. An original strategy and evaluation of a reaction mechanism for recovering valuable metals from zinc oxide dust containing intractable germanide. Xu Y; Xia H; Zhang Q; Zhang L J Hazard Mater; 2024 Apr; 468():133766. PubMed ID: 38368683 [TBL] [Abstract][Full Text] [Related]
14. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M; Peng B; Chai L; Peng N; Yan H; Hou D J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic analysis of caustic-roasting of electric arc furnace dust. Ahmad S; Sajal WR; Gulshan F; Hasan M; Rhamdhani MA Heliyon; 2022 Oct; 8(10):e11031. PubMed ID: 36276738 [TBL] [Abstract][Full Text] [Related]
16. Recovery of Zinc and Iron from Steel Mill Dust-An Overview of Available Technologies. Xue Y; Hao X; Liu X; Zhang N Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744185 [TBL] [Abstract][Full Text] [Related]
17. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust. Wu JY; Chang FC; Wang HP; Tsai MJ; Ko CH; Chen CC Environ Technol; 2015; 36(23):2952-8. PubMed ID: 25191877 [TBL] [Abstract][Full Text] [Related]
18. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876 [TBL] [Abstract][Full Text] [Related]
19. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538 [TBL] [Abstract][Full Text] [Related]
20. Zinc recovery from metallurgical slag and dust by coordination leaching in NH Ma A; Zheng X; Li S; Wang Y; Zhu S R Soc Open Sci; 2018 Jul; 5(7):180660. PubMed ID: 30109111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]