These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37177058)

  • 1. Femtosecond Autocorrelation of Localized Surface Plasmons.
    Yi R; Wu W; Zhang X
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating.
    Anderson A; Deryckx KS; Xu XG; Steinmeyer G; Raschke MB
    Nano Lett; 2010 Jul; 10(7):2519-24. PubMed ID: 20518538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Fiber Delivered Ultrafast Plasmonic Optical Switch.
    Yang J; Zhang X
    Adv Sci (Weinh); 2021 May; 8(10):2100280. PubMed ID: 34026464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna.
    Mårsell E; Losquin A; Svärd R; Miranda M; Guo C; Harth A; Lorek E; Mauritsson J; Arnold CL; Xu H; L'Huillier A; Mikkelsen A
    Nano Lett; 2015 Oct; 15(10):6601-8. PubMed ID: 26375959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals.
    Zentgraf T; Christ A; Kuhl J; Giessen H
    Phys Rev Lett; 2004 Dec; 93(24):243901. PubMed ID: 15697811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure.
    Xu Y; Qin Y; Ji B; Song X; Lin J
    Opt Express; 2020 Mar; 28(7):9310-9319. PubMed ID: 32225540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons.
    Irvine SE; Dechant A; Elezzabi AY
    Phys Rev Lett; 2004 Oct; 93(18):184801. PubMed ID: 15525170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete characterization of ultrafast optical fields by phase-preserving nonlinear autocorrelation.
    Gliserin A; Chew SH; Kim S; Kim DE
    Light Sci Appl; 2022 Sep; 11(1):277. PubMed ID: 36123334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons.
    Sun QC; Ding Y; Goodman SM; Funke HH; Nagpal P
    Nanoscale; 2014 Nov; 6(21):12450-7. PubMed ID: 25260183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of plasmonic coupling on Si metallized with intense femtosecond laser pulses.
    Tateda M; Iida Y; Miyaji G
    Sci Rep; 2023 Oct; 13(1):18414. PubMed ID: 37891205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy.
    Fu X; Sun Z; Ji S; Liu F; Feng M; Yoo BK; Zhu Y
    Nano Lett; 2022 Mar; 22(5):2009-2015. PubMed ID: 35226510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocorrelation measurement of fast electron pulses emitted through the interaction of femtosecond laser pulses with a solid target.
    Inoue S; Tokita S; Otani K; Hashida M; Hata M; Sakagami H; Taguchi T; Sakabe S
    Phys Rev Lett; 2012 Nov; 109(18):185001. PubMed ID: 23215285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of sub-100 fs electron pulses for time-resolved electron diffraction using a direct synchronization method.
    Takubo K; Banu S; Jin S; Kaneko M; Yajima W; Kuwahara M; Hayashi Y; Ishikawa T; Okimoto Y; Hada M; Koshihara S
    Rev Sci Instrum; 2022 May; 93(5):053005. PubMed ID: 35649807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Laser Manipulation of In-Lattice Plasmonic Nanoparticles.
    Zhu H; Chu L; Lv H; Ye Q; Juodkazis S; Chen F
    Adv Sci (Weinh); 2024 Oct; 11(38):e2402840. PubMed ID: 39023166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtosecond electron pulse gating using surface plasmons.
    Irvine SE; Elezzabi AY
    Opt Express; 2006 May; 14(9):4115-27. PubMed ID: 19516560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime.
    Shan H; Yu Y; Wang X; Luo Y; Zu S; Du B; Han T; Li B; Li Y; Wu J; Lin F; Shi K; Tay BK; Liu Z; Zhu X; Fang Z
    Light Sci Appl; 2019; 8():9. PubMed ID: 30651984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon enhanced terahertz emission from single layer graphene.
    Bahk YM; Ramakrishnan G; Choi J; Song H; Choi G; Kim YH; Ahn KJ; Kim DS; Planken PC
    ACS Nano; 2014 Sep; 8(9):9089-96. PubMed ID: 25137623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu
    Mu H; Liu Z; Bao X; Wan Z; Liu G; Li X; Shao H; Xing G; Shabbir B; Li L; Sun T; Li S; Ma W; Bao Q
    Front Optoelectron; 2020 Jun; 13(2):139-148. PubMed ID: 36641552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.
    Scotognella F; Della Valle G; Srimath Kandada AR; Dorfs D; Zavelani-Rossi M; Conforti M; Miszta K; Comin A; Korobchevskaya K; Lanzani G; Manna L; Tassone F
    Nano Lett; 2011 Nov; 11(11):4711-7. PubMed ID: 21939261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.