These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 37177093)
1. Multilayer Graphene as an Endoreversible Otto Engine. Myers NM; Peña FJ; Cortés N; Vargas P Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093 [TBL] [Abstract][Full Text] [Related]
2. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
3. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Deffner S Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599 [TBL] [Abstract][Full Text] [Related]
4. Otto Engine: Classical and Quantum Approach. Peña FJ; Negrete O; Cortés N; Vargas P Entropy (Basel); 2020 Jul; 22(7):. PubMed ID: 33286527 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Efficiency at Maximum Power in a Fock-Darwin Model Quantum Dot Engine. Peña FJ; Myers NM; Órdenes D; Albarrán-Arriagada F; Vargas P Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981406 [TBL] [Abstract][Full Text] [Related]
6. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
7. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics. Hong Y; Xiao Y; He J; Wang J Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459 [TBL] [Abstract][Full Text] [Related]
8. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine. Purkait C; Chand S; Biswas A Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach. Peña FJ; Negrete O; Alvarado Barrios G; Zambrano D; González A; Nunez AS; Orellana PA; Vargas P Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267226 [TBL] [Abstract][Full Text] [Related]
10. A quantum heat engine driven by atomic collisions. Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327 [TBL] [Abstract][Full Text] [Related]
11. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot. Peña FJ; Zambrano D; Negrete O; De Chiara G; Orellana PA; Vargas P Phys Rev E; 2020 Jan; 101(1-1):012116. PubMed ID: 32069598 [TBL] [Abstract][Full Text] [Related]
12. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
13. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit. Meng Z; Chen L; Wu F Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231 [TBL] [Abstract][Full Text] [Related]
14. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L; Meng Z; Ge Y; Wu F Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622 [TBL] [Abstract][Full Text] [Related]
16. Otto cycles with a quantum planar rotor. Gaida M; Nimmrichter S Phys Rev E; 2024 Sep; 110(3-1):034109. PubMed ID: 39425317 [TBL] [Abstract][Full Text] [Related]
17. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
18. Boosting the performance of quantum Otto heat engines. Chen JF; Sun CP; Dong H Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026 [TBL] [Abstract][Full Text] [Related]
19. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
20. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics. Wu F; He J; Ma Y; Wang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]