These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37177128)

  • 1. Numerical Approach to Simulate the Mechanical Behavior of Biodegradable Polymers during Erosion.
    Vieira AFC; Da Silva EHP; Ribeiro ML
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.
    Vieira AC; Guedes RM; Tita V
    J Biomech; 2015 Sep; 48(12):3478-85. PubMed ID: 26303168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical study of PLA-PCL fibers during in vitro degradation.
    Vieira AC; Vieira JC; Ferra JM; Magalhães FD; Guedes RM; Marques AT
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):451-60. PubMed ID: 21316633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of polymer degradation and erosion for finite element analysis of bioresorbable implants.
    Niu W; Pan J
    J Mech Behav Biomed Mater; 2020 Dec; 112():104022. PubMed ID: 32853863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Challenges to Polymeric Biodegradable Stents.
    Soares JS; Moore JE
    Ann Biomed Eng; 2016 Feb; 44(2):560-79. PubMed ID: 26464270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ortho ester) biodegradable polymer systems.
    Heller J; Himmelstein KJ
    Methods Enzymol; 1985; 112():422-36. PubMed ID: 3930918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications.
    Lee J; Kang SK
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34199036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polymers in controlled drug delivery.
    Heller J
    Crit Rev Ther Drug Carrier Syst; 1984; 1(1):39-90. PubMed ID: 6400195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication.
    Ekinci A; Gleadall A; Johnson AA; Li L; Han X
    J Mech Behav Biomed Mater; 2021 Feb; 114():104217. PubMed ID: 33246876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive Characterization of Biodegradable Polymer Erosion in Vivo Using Ultrasound Elastography Imaging.
    Zhou H; Gawlik A; Hernandez C; Goss M; Mansour J; Exner A
    ACS Biomater Sci Eng; 2016 Jun; 2(6):1005-1012. PubMed ID: 33429509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks.
    Soares JS; Zunino P
    Biomaterials; 2010 Apr; 31(11):3032-42. PubMed ID: 20129660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus.
    Soares JS; Rajagopal KR; Moore JE
    Biomech Model Mechanobiol; 2010 Apr; 9(2):177-86. PubMed ID: 19680702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nonaffine displacement on the mechanical performance of degraded PCL and its graphene composites: an atomistic investigation.
    Nie Y; Li C; Zhan H; Kou L; Gu Y
    Nanoscale; 2022 Oct; 14(38):14082-14096. PubMed ID: 36056646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.
    Rizzarelli P; Carroccio S
    Anal Chim Acta; 2014 Jan; 808():18-43. PubMed ID: 24370091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable elastomers for biomedical applications and regenerative medicine.
    Bat E; Zhang Z; Feijen J; Grijpma DW; Poot AA
    Regen Med; 2014 May; 9(3):385-98. PubMed ID: 24935047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Finite Element Investigation on Material and Design Parameters of Ventricular Septal Defect Occluder Devices.
    Zhang Z; Xiong Y; Hu J; Guo X; Xu X; Chen J; Wang Y; Chen Y
    J Funct Biomater; 2022 Oct; 13(4):. PubMed ID: 36278651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive framework for biodegradable polymers with applications to biodegradable stents.
    Soares JS; Moore JE; Rajagopal KR
    ASAIO J; 2008; 54(3):295-301. PubMed ID: 18496280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.