These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37177194)

  • 1. Review on the Degradation of Poly(lactic acid) during Melt Processing.
    Velghe I; Buffel B; Vandeginste V; Thielemans W; Desplentere F
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLA Melt Stabilization by High-Surface-Area Graphite and Carbon Black.
    D'Urso L; Acocella MR; Guerra G; Iozzino V; De Santis F; Pantani R
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(lactic Acid)-Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties.
    Arrigo R; Bartoli M; Malucelli G
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32290601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials.
    Peinado V; Castell P; García L; Fernández Á
    Materials (Basel); 2015 Oct; 8(10):7106-7117. PubMed ID: 28793622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process-Property Relationships for Melt-Spun Poly(lactic acid) Yarn.
    Gajjar CR; Stallrich JW; Pasquinelli MA; King MW
    ACS Omega; 2021 Jun; 6(24):15920-15928. PubMed ID: 34179636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of Morphology, Rheology, and Dynamic Properties toward Unveiling the Partial Miscibility in Poly(lactic acid)-Poly(hydroxybutyrate-co-hydroxyvalerate) Blends.
    Qiao H; Maazouz A; Lamnawar K
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life.
    Castro-Aguirre E; Iñiguez-Franco F; Samsudin H; Fang X; Auras R
    Adv Drug Deliv Rev; 2016 Dec; 107():333-366. PubMed ID: 27046295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability.
    Kakroodi AR; Kazemi Y; Ding W; Ameli A; Park CB
    Biomacromolecules; 2015 Dec; 16(12):3925-35. PubMed ID: 26536276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid).
    Beltrán FR; Lorenzo V; Acosta J; de la Orden MU; Martínez Urreaga J
    J Environ Manage; 2018 Jun; 216():25-31. PubMed ID: 28506670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly poly(lactic acid) microbeads for cosmetics via melt electrospraying.
    Nam HC; Park WH
    Int J Biol Macromol; 2020 Aug; 157():734-742. PubMed ID: 31805334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Cellulose Nanocrystal-Reinforced Poly(lactic acid) Nanocomposites through Noncovalent Modification with PLLA-Based Surfactants.
    Mariano M; Pilate F; de Oliveira FB; Khelifa F; Dubois P; Raquez JM; Dufresne A
    ACS Omega; 2017 Jun; 2(6):2678-2688. PubMed ID: 31457609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology, Thermal, Mechanical Properties and Rheological Behavior of Biodegradable Poly(butylene succinate)/poly(lactic acid) In-Situ Submicrofibrillar Composites.
    Zhu Z; He H; Xue B; Zhan Z; Wang G; Chen M
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Lactic Acid) and Its Copolymers with Poly(Hexylene Succinate).
    Chrysafi I; Ainali NM; Bikiaris DN
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33922002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(Lactic Acid)-Based Nanobiocomposites with Modulated Degradation Rates.
    Valentina I; Haroutioun A; Fabrice L; Vincent V; Roberto P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite.
    Monika ; Mulchandani N; Katiyar V
    Int J Biol Macromol; 2019 Dec; 141():831-842. PubMed ID: 31513852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications.
    Mulla MZ; Rahman MRT; Marcos B; Tiwari B; Pathania S
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological, Thermal, and Degradation Properties of PLA/PPG Blends.
    Xie D; Zhao Y; Li Y; LaChance AM; Lai J; Sun L; Chen J
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31717782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent.
    Matuana LM; Faruk O; Diaz CA
    Bioresour Technol; 2009 Dec; 100(23):5947-54. PubMed ID: 19615893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology.
    Tesfaye M; Patwa R; Gupta A; Kashyap MJ; Katiyar V
    Int J Biol Macromol; 2017 Aug; 101():580-594. PubMed ID: 28322953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.