These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37177343)

  • 41. Experimental investigation on strengthening of Zea mays root fibres for biodegradable composite materials using potassium permanganate treatment.
    Kavitha SA; Priya RK; Arunachalam KP; Avudaiappan S; Saavedra Flores EI; Blanco D
    Sci Rep; 2024 Jun; 14(1):12754. PubMed ID: 38830936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
    Senthamaraikannan P; Kathiresan M
    Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite.
    Wang H; Memon H; A M Hassan E; Miah MS; Ali MA
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites.
    Vijayakkannan K; Rajendran I
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Hot-Alkali Treatment on the Structure Composition of Jute Fabrics and Mechanical Properties of Laminated Composites.
    Wang X; Chang L; Shi X; Wang L
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extraction and characterization of cellulose microfibers from cornhusk for application as reinforcing agent in biocomposite.
    Moghaddam MK; Gheshlagh FG; Moezzi M
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130669. PubMed ID: 38453110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films.
    Barbash VA; Yaschenko OV; Alushkin SV; Kondratyuk AS; Posudievsky OY; Koshechko VG
    Nanoscale Res Lett; 2016 Dec; 11(1):410. PubMed ID: 27644236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Nano-SiO
    Liu H; Sun Y; Yu Y; Zhang M; Li L; Ma L
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extraction of Lightweight
    Kaya AI
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and Characterization of Plantain (
    Venegas R; Torres A; Rueda AM; Morales MA; Arias MJ; Porras A
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. All-cellulose composite prepared by selective dissolving of fiber surface.
    Nishino T; Arimoto N
    Biomacromolecules; 2007 Sep; 8(9):2712-6. PubMed ID: 17718498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Morphological, acoustical, mechanical and thermal properties of sustainable green Yucca (
    Taban E; Mirzaei R; Faridan M; Samaei E; Salimi F; Tajpoor A; Ghalenoei M
    J Environ Health Sci Eng; 2020 Dec; 18(2):883-896. PubMed ID: 33312610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extraction and characterization of fiber from the flower stalk of Sansevieria cylindrica.
    Palanisamy S; Rajan VK; Mani AK; Palaniappan M; Santulli C; Alavudeen A; Ayrilmis N
    Physiol Plant; 2024; 176(2):e14279. PubMed ID: 38629121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves.
    A N B; K J N
    Carbohydr Polym; 2017 Oct; 174():200-208. PubMed ID: 28821059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
    Lomelí-Ramírez MG; Kestur SG; Manríquez-González R; Iwakiri S; de Muniz GB; Flores-Sahagun TS
    Carbohydr Polym; 2014 Feb; 102():576-83. PubMed ID: 24507321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feasibility of the use of different types of enzymatically treated cellulosic fibres for polylactic acid (PLA) recycling.
    Bendourou FE; Suresh G; Laadila MA; Kumar P; Rouissi T; Dhillon GS; Zied K; Brar SK; Galvez R
    Waste Manag; 2021 Feb; 121():237-247. PubMed ID: 33385952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing Mechanical Properties of Jute, Kenaf, and Pineapple Leaf Fiber-Reinforced Polypropylene Composites: Experiment and Modelling.
    Sayeed MMA; Sayem ASM; Haider J; Akter S; Habib MM; Rahman H; Shahinur S
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical, thermal and morphological properties of polybutylene succinate-waste pineapple leaf fibres composites.
    Phiri MJ; Mofokeng JP; Phiri MM; Mngomezulu M; Tywabi-Ngeva Z
    Heliyon; 2023 Nov; 9(11):e21238. PubMed ID: 37908706
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extraction and characterization of Bougainvillea glabra fibers: A study on chemical, physical, mechanical and morphological properties.
    Ramesh M; Ravikanth D; Selvan MT; Sahayaraj AF; Saravanakumar A
    Int J Biol Macromol; 2024 Jul; ():133787. PubMed ID: 38992535
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber.
    Fouad H; Kian LK; Jawaid M; Alotaibi MD; Alothman OY; Hashem M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33297332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.