These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37177431)
21. Extreme material parameters accessible by active acoustic metamaterials with Willis coupling. Craig SR; Wang B; Su X; Banerjee D; Welch PJ; Yip MC; Hu Y; Shi C J Acoust Soc Am; 2022 Mar; 151(3):1722. PubMed ID: 35364942 [TBL] [Abstract][Full Text] [Related]
22. Multimode shunt damping of piezoelectric smart panel for noise reduction. Kim J; Kim JH J Acoust Soc Am; 2004 Aug; 116(2):942-8. PubMed ID: 15376660 [TBL] [Abstract][Full Text] [Related]
23. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers. Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180 [TBL] [Abstract][Full Text] [Related]
24. Bioinspired periodic panels optimized for acoustic insulation. Dal Poggetto VF; Pugno NM; Arruda JRF Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210389. PubMed ID: 36209809 [TBL] [Abstract][Full Text] [Related]
25. Moth wings are acoustic metamaterials. Neil TR; Shen Z; Robert D; Drinkwater BW; Holderied MW Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31134-31141. PubMed ID: 33229524 [TBL] [Abstract][Full Text] [Related]
26. Low-Frequency Sound-Insulation Performance of Labyrinth-Type Helmholtz and Thin-Film Compound Acoustic Metamaterial. Hu P; Zhao J; Liu H; Zhang X; Zhang G; Yao H Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336216 [TBL] [Abstract][Full Text] [Related]
27. Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials. Chang L; Jiang A; Rao M; Ma F; Huang H; Zhu Z; Zhang Y; Wu Y; Li B; Hu Y RSC Adv; 2021 Nov; 11(60):37784-37800. PubMed ID: 35498066 [TBL] [Abstract][Full Text] [Related]
28. Investigating and exploiting the impact of variability in resonator parameters on the vibration attenuation in locally resonant metamaterials. Van Belle L; Deckers E; Cicirello A Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230364. PubMed ID: 39129401 [TBL] [Abstract][Full Text] [Related]
29. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures. Yu G; Li D; Cheng L J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783 [TBL] [Abstract][Full Text] [Related]
31. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240038. PubMed ID: 39129405 [TBL] [Abstract][Full Text] [Related]
32. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230369. PubMed ID: 39069760 [TBL] [Abstract][Full Text] [Related]
33. Engineering Acoustic Metamaterials for Sound Absorption: From Uniform to Gradient Structures. Zhang X; Qu Z; Wang H iScience; 2020 May; 23(5):101110. PubMed ID: 32408175 [TBL] [Abstract][Full Text] [Related]
34. Magneto-Mechanical Bilayer Metamaterial with Global Area-Preserving Density Tunability for Acoustic Wave Regulation. Sim J; Wu S; Dai J; Zhao RR Adv Mater; 2023 Sep; 35(35):e2303541. PubMed ID: 37335806 [TBL] [Abstract][Full Text] [Related]
36. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Li Y; Wang S; Peng Q; Zhou Z; Yang Z; He X; Li Y Nanoscale; 2019 Sep; 11(35):16384-16392. PubMed ID: 31436776 [TBL] [Abstract][Full Text] [Related]
37. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion. Khan FU; Izhar Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884 [TBL] [Abstract][Full Text] [Related]
38. Selective dynamic band gap tuning in metamaterials using graded photoresponsive resonator arrays. Dal Poggetto VF; Urban D; Nistri F; Beoletto PH; Descrovi E; Miniaci M; Pugno NM; Bosia F; Gliozzi AS Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240150. PubMed ID: 39129411 [TBL] [Abstract][Full Text] [Related]
39. Novel Design Scheme for Structural Fundamental Frequency of Porous Acoustic Metamaterials. Zhou Y; Li H; Ye M; Shi Y; Gao L Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233911 [TBL] [Abstract][Full Text] [Related]
40. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs). Vanhille C Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]