BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37177486)

  • 1. Switchable Polyacrylic Acid Polyelectrolyte Brushes for Surface Plasmon Resonance Applications.
    Al-Bataineh QM; Telfah AD; Shpacovitch V; Tavares CJ; Hergenröder R
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications.
    Klinghammer S; Rauch S; Pregl S; Uhlmann P; Baraban L; Cuniberti G
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32155794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption.
    Pan C; Liu X; Gong K; Mumtaz F; Wang Y
    J Mater Chem B; 2018 Jan; 6(4):556-567. PubMed ID: 32254484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of chain length of polyacrylic acid (PAA) on proteins adsorption of polystyrene-polyacrylic acid (PS-PAA) spherical polyelectrolyte brushes].
    Liu Y; Wen Y; Xu H; Guo X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):421-7. PubMed ID: 23858773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing surface-tethered poly(acrylic acid) brushes as 3D functional thin film for biosensing applications.
    Akkahat P; Hoven VP
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):198-205. PubMed ID: 21530190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments.
    Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K
    Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency.
    Akkahat P; Mekboonsonglarp W; Kiatkamjornwong S; Hoven VP
    Langmuir; 2012 Mar; 28(11):5302-11. PubMed ID: 22329634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive polyelectrolyte block copolymer brushes synthesized from the Si wafer via atom-transfer radical polymerization.
    Yu K; Wang H; Xue L; Han Y
    Langmuir; 2007 Jan; 23(3):1443-52. PubMed ID: 17241071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts.
    Nalam PC; Lee HS; Bhatt N; Carpick RW; Eckmann DM; Composto RJ
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12936-12948. PubMed ID: 28221026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems.
    Motornov M; Tam TK; Pita M; Tokarev I; Katz E; Minko S
    Nanotechnology; 2009 Oct; 20(43):434006. PubMed ID: 19801770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofunctionalization of Titanium Substrates Using Nanoscale Polymer Brushes with Cell Adhesion Peptides.
    Rosenthal A; Mantz A; Nguyen A; Bittrich E; Schubert E; Schubert M; Stamm M; Pannier AK; Uhlmann P
    J Phys Chem B; 2018 Jun; 122(25):6543-6550. PubMed ID: 29878775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate.
    Al-Bataineh QM; Shpacovitch V; Sadiq D; Telfah A; Hergenröder R
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate.
    Li Y; Lin Y; Dai Y; Ko Y; Genzer J
    Langmuir; 2019 Oct; 35(42):13693-13699. PubMed ID: 31565947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No-core fiber interferometry pH sensor based on a polyvinyl alcohol/polyacrylic acid and silica/polyvinyl alcohol/polyacrylic acid hydrogel coating.
    Abdzaid TA; Taher HJ
    Appl Opt; 2021 Feb; 60(6):1587-1594. PubMed ID: 33690493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of lysozyme signal detected in capillary electrophoresis using mixed polymer brushes coating with switchable properties.
    Hou M; Zhang M; Chen L; Gong K; Pan C; Wang Y
    Talanta; 2019 Sep; 202():426-435. PubMed ID: 31171204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Permeation Properties of a pH-Responsive Polyacrylic Acid Coated Porous Alumina Membrane.
    Sato T; Makino K; Tamesue S; Ishiura G; Itoh N
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of mixed polymer brushes based on poly(2-methyl-2-oxazoline) and poly(acrylic acid) to on-line preconcentration of lysozyme by capillary electrophoresis].
    Zhang M; Wang Y; Muhammad A; Chen L; Wang Y
    Se Pu; 2020 Sep; 38(9):1085-1094. PubMed ID: 34213275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate.
    Ehtiati K; Moghaddam SZ; Daugaard AE; Thormann E
    Langmuir; 2020 Mar; 36(9):2339-2348. PubMed ID: 32069409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes.
    Fang M; Chen Z; Wang S; Lu H
    Nanotechnology; 2012 Mar; 23(8):085704. PubMed ID: 22293553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.