These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37177603)
1. Intrusion Detection Method for Internet of Vehicles Based on Parallel Analysis of Spatio-Temporal Features. Xing L; Wang K; Wu H; Ma H; Zhang X Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177603 [TBL] [Abstract][Full Text] [Related]
2. A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm. Hashmi A; Barukab OM; Hamza Osman A PLoS One; 2024; 19(5):e0302294. PubMed ID: 38781186 [TBL] [Abstract][Full Text] [Related]
3. HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles. Ullah S; Khan MA; Ahmad J; Jamal SS; E Huma Z; Hassan MT; Pitropakis N; Arshad ; Buchanan WJ Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214241 [TBL] [Abstract][Full Text] [Related]
4. Multi-Classification and Tree-Based Ensemble Network for the Intrusion Detection System in the Internet of Vehicles. Gou W; Zhang H; Zhang R Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960485 [TBL] [Abstract][Full Text] [Related]
5. Network Intrusion Detection Technology Based on Convolutional Neural Network and BiGRU. Cao B; Li C; Song Y; Fan X Comput Intell Neurosci; 2022; 2022():1942847. PubMed ID: 35463242 [TBL] [Abstract][Full Text] [Related]
6. A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data. Cui J; Zong L; Xie J; Tang M Appl Intell (Dordr); 2023; 53(1):272-288. PubMed ID: 35440844 [TBL] [Abstract][Full Text] [Related]
7. Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques. Musthafa MB; Huda S; Kodera Y; Ali MA; Araki S; Mwaura J; Nogami Y Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001072 [TBL] [Abstract][Full Text] [Related]
8. Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach. Yao R; Wang N; Liu Z; Chen P; Sheng X Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477451 [TBL] [Abstract][Full Text] [Related]
9. GSOOA-1DDRSN: Network traffic anomaly detection based on deep residual shrinkage networks. Zuo F; Zhang D; Li L; He Q; Deng J Heliyon; 2024 Jun; 10(11):e32087. PubMed ID: 38868050 [TBL] [Abstract][Full Text] [Related]
10. A Network Intrusion Detection System Using Hybrid Multilayer Deep Learning Model. Umair MB; Iqbal Z; Faraz MA; Khan MA; Zhang YD; Razmjooy N; Kadry S Big Data; 2024 Oct; 12(5):367-376. PubMed ID: 35704031 [TBL] [Abstract][Full Text] [Related]
11. An improved long short term memory network for intrusion detection. Awad AA; Ali AF; Gaber T PLoS One; 2023; 18(8):e0284795. PubMed ID: 37527249 [TBL] [Abstract][Full Text] [Related]
12. GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction. Luo Y; Zheng J; Wang X; Tao Y; Jiang X Neural Netw; 2024 Mar; 171():251-262. PubMed ID: 38103435 [TBL] [Abstract][Full Text] [Related]
13. Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network. Yang Y; Zheng K; Wu C; Yang Y Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159512 [TBL] [Abstract][Full Text] [Related]
14. Towards an Effective Intrusion Detection Model Using Focal Loss Variational Autoencoder for Internet of Things (IoT). Khanam S; Ahmedy I; Idris MYI; Jaward MH Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957379 [TBL] [Abstract][Full Text] [Related]
15. Few-Shot network intrusion detection based on prototypical capsule network with attention mechanism. Sun H; Wan L; Liu M; Wang B PLoS One; 2023; 18(4):e0284632. PubMed ID: 37079539 [TBL] [Abstract][Full Text] [Related]
16. Explainable Deep Learning-Based Feature Selection and Intrusion Detection Method on the Internet of Things. Chen X; Liu M; Wang Z; Wang Y Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204919 [TBL] [Abstract][Full Text] [Related]
17. Network Intrusion Detection Method Based on FCWGAN and BiLSTM. Ma Z; Li J; Song Y; Wu X; Chen C Comput Intell Neurosci; 2022; 2022():6591140. PubMed ID: 35463253 [TBL] [Abstract][Full Text] [Related]
18. Imrana Y; Xiang Y; Ali L; Abdul-Rauf Z; Hu YC; Kadry S; Lim S Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271164 [TBL] [Abstract][Full Text] [Related]
19. An effective method for anomaly detection in industrial Internet of Things using XGBoost and LSTM. Chen Z; Li Z; Huang J; Liu S; Long H Sci Rep; 2024 Oct; 14(1):23969. PubMed ID: 39397055 [TBL] [Abstract][Full Text] [Related]
20. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation. Vaiyapuri T; Binbusayyis A PeerJ Comput Sci; 2020; 6():e327. PubMed ID: 33816977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]