These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 37177631)

  • 21. Influence of gut and intratumoral microbiota on the immune microenvironment and anti-cancer therapy.
    Chen Y; Liu B; Wei Y; Kuang DM
    Pharmacol Res; 2021 Dec; 174():105966. PubMed ID: 34728366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy.
    Murugan C; Sharma V; Murugan RK; Malaimegu G; Sundaramurthy A
    J Control Release; 2019 Apr; 299():1-20. PubMed ID: 30771414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications.
    Wong SH; Yu J
    Nat Rev Gastroenterol Hepatol; 2019 Nov; 16(11):690-704. PubMed ID: 31554963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design Strategies of Tumor-Targeted Delivery Systems Based on 2D Nanomaterials.
    Ding L; Liang M; Li C; Ji X; Zhang J; Xie W; Reis RL; Li FR; Gu S; Wang Y
    Small Methods; 2022 Nov; 6(11):e2200853. PubMed ID: 36161304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging roles of the gut microbiota in cancer immunotherapy.
    Shi Z; Li H; Song W; Zhou Z; Li Z; Zhang M
    Front Immunol; 2023; 14():1139821. PubMed ID: 36911704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The efficacy and toxicity of antineoplastic antimetabolites: Role of gut microbiota.
    Huang X; Chen L; Li Z; Zheng B; Liu N; Fang Q; Jiang J; Rao T; Ouyang D
    Toxicology; 2021 Aug; 460():152858. PubMed ID: 34273448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer.
    Hou X; Zheng Z; Wei J; Zhao L
    Front Immunol; 2022; 13():1030745. PubMed ID: 36426359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions.
    Garcia-Gutierrez E; Cotter PD
    Crit Rev Microbiol; 2022 Aug; 48(4):463-488. PubMed ID: 34591726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fecal microbiota transplantation in cancer management: Current status and perspectives.
    Chen D; Wu J; Jin D; Wang B; Cao H
    Int J Cancer; 2019 Oct; 145(8):2021-2031. PubMed ID: 30458058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crohn's Disease, Host-Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches.
    Núñez-Sánchez MA; Melgar S; O'Donoghue K; Martínez-Sánchez MA; Fernández-Ruiz VE; Ferrer-Gómez M; Ruiz-Alcaraz AJ; Ramos-Molina B
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green Synthesized Nanomaterials for Safe Technology in Sustainable Agriculture.
    Singh NB; Chaudhary RG; Desimone MF; Agrawal A; Shukla SK
    Curr Pharm Biotechnol; 2023; 24(1):61-85. PubMed ID: 35676845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2D Nanomaterials for Cancer Theranostic Applications.
    Cheng L; Wang X; Gong F; Liu T; Liu Z
    Adv Mater; 2020 Apr; 32(13):e1902333. PubMed ID: 31353752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbiome as a Target for Cancer Therapy.
    Suraya R; Nagano T; Kobayashi K; Nishimura Y
    Integr Cancer Ther; 2020; 19():1534735420920721. PubMed ID: 32564632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities.
    Bantun F; Singh R; Alkhanani MF; Almalki AH; Alshammary F; Khan S; Haque S; Srivastava M
    Sci Total Environ; 2022 Jul; 830():154789. PubMed ID: 35341865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gastrointestinal worms and bacteria: From association to intervention.
    Rooney J; Cantacessi C; Sotillo J; Cortés A
    Parasite Immunol; 2023 Apr; 45(4):e12955. PubMed ID: 36300732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systems to model the personalized aspects of microbiome health and gut dysbiosis.
    Matthewman C; Narin A; Huston H; Hopkins CE
    Mol Aspects Med; 2023 Jun; 91():101115. PubMed ID: 36104261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes.
    Wang M; Zhang L; Chang W; Zhang Y
    Front Immunol; 2022; 13():1096551. PubMed ID: 36726985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanomaterials: a review of emerging contaminants with potential health or environmental impact.
    El-Kalliny AS; Abdel-Wahed MS; El-Zahhar AA; Hamza IA; Gad-Allah TA
    Discov Nano; 2023 Apr; 18(1):68. PubMed ID: 37382722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trophic transfer of nanomaterials and their effects on high-trophic-level predators.
    Dang F; Yuan Y; Huang Y; Wang Y; Xing B
    NanoImpact; 2023 Oct; 32():100489. PubMed ID: 37993019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research.
    Zhang ZJ; Zheng H
    Insect Sci; 2022 Aug; 29(4):958-976. PubMed ID: 35567381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.