These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 37177643)
1. A Systematic Literature Review on Machine Learning and Deep Learning Approaches for Detecting DDoS Attacks in Software-Defined Networking. Bahashwan AA; Anbar M; Manickam S; Al-Amiedy TA; Aladaileh MA; Hasbullah IH Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177643 [TBL] [Abstract][Full Text] [Related]
2. Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT. Aslam M; Ye D; Tariq A; Asad M; Hanif M; Ndzi D; Chelloug SA; Elaziz MA; Al-Qaness MAA; Jilani SF Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408312 [TBL] [Abstract][Full Text] [Related]
3. Software-Defined-Networking-Based One-versus-Rest Strategy for Detecting and Mitigating Distributed Denial-of-Service Attacks in Smart Home Internet of Things Devices. Karmous N; Aoueileyine MO; Abdelkader M; Romdhani L; Youssef N Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124069 [TBL] [Abstract][Full Text] [Related]
4. Multi-Stage Learning Framework Using Convolutional Neural Network and Decision Tree-Based Classification for Detection of DDoS Pandemic Attacks in SDN-Based SCADA Systems. Polat O; Türkoğlu M; Polat H; Oyucu S; Üzen H; Yardımcı F; Aksöz A Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339756 [TBL] [Abstract][Full Text] [Related]
5. Ensemble Learning Framework for DDoS Detection in SDN-Based SCADA Systems. Oyucu S; Polat O; Türkoğlu M; Polat H; Aksöz A; Ağdaş MT Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203015 [TBL] [Abstract][Full Text] [Related]
6. SDN-Defend: A Lightweight Online Attack Detection and Mitigation System for DDoS Attacks in SDN. Wang J; Wang L Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365984 [TBL] [Abstract][Full Text] [Related]
7. HLD-DDoSDN: High and low-rates dataset-based DDoS attacks against SDN. Bahashwan AA; Anbar M; Manickam S; Issa G; Aladaileh MA; Alabsi BA; Rihan SDA PLoS One; 2024; 19(2):e0297548. PubMed ID: 38330004 [TBL] [Abstract][Full Text] [Related]
8. MFFLR-DDoS: An encrypted LR-DDoS attack detection method based on multi-granularity feature fusions in SDN. Wang J; Wang L; Wang R Math Biosci Eng; 2024 Feb; 21(3):4187-4209. PubMed ID: 38549324 [TBL] [Abstract][Full Text] [Related]
9. Deep learning approaches for detecting DDoS attacks: a systematic review. Mittal M; Kumar K; Behal S Soft comput; 2022 Jan; ():1-37. PubMed ID: 35103047 [TBL] [Abstract][Full Text] [Related]
10. DDosTC: A Transformer-Based Network Attack Detection Hybrid Mechanism in SDN. Wang H; Li W Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372284 [TBL] [Abstract][Full Text] [Related]
11. An entropy and machine learning based approach for DDoS attacks detection in software defined networks. Hassan AI; El Reheem EA; Guirguis SK Sci Rep; 2024 Aug; 14(1):18159. PubMed ID: 39103359 [TBL] [Abstract][Full Text] [Related]
12. Distributed Denial of Service Attack Detection in Network Traffic Using Deep Learning Algorithm. Ramzan M; Shoaib M; Altaf A; Arshad S; Iqbal F; Castilla ÁK; Ashraf I Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896735 [TBL] [Abstract][Full Text] [Related]
13. Traffic Feature Selection and Distributed Denial of Service Attack Detection in Software-Defined Networks Based on Machine Learning. Han D; Li H; Fu X; Zhou S Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001123 [TBL] [Abstract][Full Text] [Related]
14. A DDoS Detection Method Based on Feature Engineering and Machine Learning in Software-Defined Networks. Liu Z; Wang Y; Feng F; Liu Y; Li Z; Shan Y Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448025 [TBL] [Abstract][Full Text] [Related]
15. DDoS attack detection in smart grid network using reconstructive machine learning models. Naqvi SSA; Li Y; Uzair M PeerJ Comput Sci; 2024; 10():e1784. PubMed ID: 38259891 [TBL] [Abstract][Full Text] [Related]
16. A Method of DDoS Attack Detection and Mitigation for the Comprehensive Coordinated Protection of SDN Controllers. Wang J; Wang L; Wang R Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628240 [TBL] [Abstract][Full Text] [Related]
17. Detection and mitigation of DDoS attacks based on multi-dimensional characteristics in SDN. Wang K; Fu Y; Duan X; Liu T Sci Rep; 2024 Jul; 14(1):16421. PubMed ID: 39014041 [TBL] [Abstract][Full Text] [Related]
18. High-Speed Network DDoS Attack Detection: A Survey. Haseeb-Ur-Rehman RMA; Aman AHM; Hasan MK; Ariffin KAZ; Namoun A; Tufail A; Kim KH Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571632 [TBL] [Abstract][Full Text] [Related]
19. Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction. Ahmed N; Ngadi AB; Sharif JM; Hussain S; Uddin M; Rathore MS; Iqbal J; Abdelhaq M; Alsaqour R; Ullah SS; Zuhra FT Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298244 [TBL] [Abstract][Full Text] [Related]
20. A Taxonomy of DDoS Attack Mitigation Approaches Featured by SDN Technologies in IoT Scenarios. Silva FSD; Silva E; Neto EP; Lemos M; Neto AJV; Esposito F Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]