BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37177655)

  • 41. Reconfigurable MoS
    Yuan J; Liu SE; Shylendra A; Gaviria Rojas WA; Guo S; Bergeron H; Li S; Lee HS; Nasrin S; Sangwan VK; Trivedi AR; Hersam MC
    Nano Lett; 2021 Aug; 21(15):6432-6440. PubMed ID: 34283622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks.
    Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2022; 16():819063. PubMed ID: 35360182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neuromorphic applications in medicine.
    Aboumerhi K; Güemes A; Liu H; Tenore F; Etienne-Cummings R
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. All-optical spiking neurosynaptic networks with self-learning capabilities.
    Feldmann J; Youngblood N; Wright CD; Bhaskaran H; Pernice WHP
    Nature; 2019 May; 569(7755):208-214. PubMed ID: 31068721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Neuromorphic Model With Delay-Based Reservoir for Continuous Ventricular Heartbeat Detection.
    Liang X; Li H; Vuckovic A; Mercer J; Heidari H
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1837-1849. PubMed ID: 34797760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A low-power vertical dual-gate neurotransistor with short-term memory for high energy-efficient neuromorphic computing.
    Xu H; Shang D; Luo Q; An J; Li Y; Wu S; Yao Z; Zhang W; Xu X; Dou C; Jiang H; Pan L; Zhang X; Wang M; Wang Z; Tang J; Liu Q; Liu M
    Nat Commun; 2023 Oct; 14(1):6385. PubMed ID: 37821427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware.
    Behrenbeck J; Tayeb Z; Bhiri C; Richter C; Rhodes O; Kasabov N; Espinosa-Ramos JI; Furber S; Cheng G; Conradt J
    J Neural Eng; 2019 Apr; 16(2):026014. PubMed ID: 30577030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A biohybrid synapse with neurotransmitter-mediated plasticity.
    Keene ST; Lubrano C; Kazemzadeh S; Melianas A; Tuchman Y; Polino G; Scognamiglio P; Cinà L; Salleo A; van de Burgt Y; Santoro F
    Nat Mater; 2020 Sep; 19(9):969-973. PubMed ID: 32541935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts.
    Vanarse A; Osseiran A; Rassau A; van der Made P
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062402
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
    Liu Q; Pineda-García G; Stromatias E; Serrano-Gotarredona T; Furber SB
    Front Neurosci; 2016; 10():496. PubMed ID: 27853419
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms.
    Petrovici MA; Vogginger B; Müller P; Breitwieser O; Lundqvist M; Muller L; Ehrlich M; Destexhe A; Lansner A; Schüffny R; Schemmel J; Meier K
    PLoS One; 2014; 9(10):e108590. PubMed ID: 25303102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
    Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC
    Front Neurosci; 2015; 9():222. PubMed ID: 26217169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-inspired computational memory model of the Hippocampus: An approach to a neuromorphic spike-based Content-Addressable Memory.
    Casanueva-Morato D; Ayuso-Martinez A; Dominguez-Morales JP; Jimenez-Fernandez A; Jimenez-Moreno G
    Neural Netw; 2024 Jun; 178():106474. PubMed ID: 38941736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Canonical circuit computations for computer vision.
    Schmid D; Jarvers C; Neumann H
    Biol Cybern; 2023 Oct; 117(4-5):299-329. PubMed ID: 37306782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neuroinform; 2022; 16():883360. PubMed ID: 36726406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi.
    Dey S; Dimitrov A
    Front Neurosci; 2022; 16():883360. PubMed ID: 35712458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.