BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37177699)

  • 1. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Technical Skill Assessment and Mental Load Evaluation in Robot-Assisted Minimally Invasive Surgery.
    Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920087
    [No Abstract]   [Full Text] [Related]  

  • 4. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video-based surgical skill assessment using 3D convolutional neural networks.
    Funke I; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1217-1225. PubMed ID: 31104257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of real-time virtual reality-based teaching cues on learning needle passing for robot-assisted minimally invasive surgery: a randomized controlled trial.
    Malpani A; Vedula SS; Lin HC; Hager GD; Taylor RH
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1187-1194. PubMed ID: 32385598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training.
    Nagyné Elek R; Haidegger T
    J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic and accurate needle detection in 2D ultrasound during robot-assisted needle insertion process.
    Chen S; Lin Y; Li Z; Wang F; Cao Q
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):295-303. PubMed ID: 34677747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SATR-DL: Improving Surgical Skill Assessment And Task Recognition In Robot-Assisted Surgery With Deep Neural Networks.
    Wang Z; Fey AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1793-1796. PubMed ID: 30440742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamlyn CRM: a compact master manipulator for surgical robot remote control.
    Zhang D; Liu J; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):503-514. PubMed ID: 31956954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Concurrent Framework for Constrained Inverse Kinematics of Minimally Invasive Surgical Robots.
    Colan J; Davila A; Fozilov K; Hasegawa Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical tooltip motion metrics assessment using virtual marker: an objective approach to skill assessment for minimally invasive surgery.
    Aghazadeh F; Zheng B; Tavakoli M; Rouhani H
    Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2191-2202. PubMed ID: 37597089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.
    Sang H; Yang C; Liu F; Yun J; Jin G
    Int J Med Robot; 2016 Dec; 12(4):670-679. PubMed ID: 27921372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Surgeons' Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study.
    Takács K; Lukács E; Levendovics R; Pekli D; Szijártó A; Haidegger T
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery.
    Ahmidi N; Hager GD; Ishii L; Fichtinger G; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):295-302. PubMed ID: 20879412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight Deep Neural Network for Articulated Joint Detection of Surgical Instrument in Minimally Invasive Surgical Robot.
    Sun Y; Pan B; Fu Y
    J Digit Imaging; 2022 Aug; 35(4):923-937. PubMed ID: 35266089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions.
    Ostler D; Seibold M; Fuchtmann J; Samm N; Feussner H; Wilhelm D; Navab N
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):771-779. PubMed ID: 32323212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy.
    den Boer RB; Jaspers TJM; de Jongh C; Pluim JPW; van der Sommen F; Boers T; van Hillegersberg R; Van Eijnatten MAJM; Ruurda JP
    Surg Endosc; 2023 Jul; 37(7):5164-5175. PubMed ID: 36947221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.