BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37177699)

  • 21. Vision-based hand-eye calibration for robot-assisted minimally invasive surgery.
    Sun Y; Pan B; Guo Y; Fu Y; Niu G
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2061-2069. PubMed ID: 32808149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation filters tissue tracking with application to robotic minimally invasive surgery.
    Sun Y; Pan B; Fu Y
    Int J Med Robot; 2022 Dec; 18(6):e2440. PubMed ID: 35848917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of robot-assisted minimally invasive transforaminal lumbar interbody fusion and traditional open surgery in the treatment of lumbar spondylolisthesis].
    Cui GY; Tian W; He D; Xing YG; Liu B; Yuan Q; Wang YQ; Sun YQ
    Zhonghua Wai Ke Za Zhi; 2017 Jul; 55(7):543-548. PubMed ID: 28655085
    [No Abstract]   [Full Text] [Related]  

  • 24. Improved surgical instruments without coupled motion used in minimally invasive surgery.
    Niu G; Pan B; Zhang F; Feng H; Fu Y
    Int J Med Robot; 2018 Dec; 14(6):e1942. PubMed ID: 30058772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-camera, multi-view system for training and skill assessment for robot-assisted surgery.
    Abdelaal AE; Avinash A; Kalia M; Hager GD; Salcudean SE
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1369-1377. PubMed ID: 32430693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robot-assisted Minimally-invasive Internal Fixation of Pelvic Ring Injuries: A Single-center Experience.
    Liu HS; Duan SJ; Xin FZ; Zhang Z; Wang XG; Liu SD
    Orthop Surg; 2019 Feb; 11(1):42-51. PubMed ID: 30714333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a medical robot system for minimally invasive surgery.
    Feng M; Fu Y; Pan B; Liu C
    Int J Med Robot; 2012 Mar; 8(1):85-96. PubMed ID: 21990214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot.
    Zhao Y; Guo S; Wang Y; Cui J; Ma Y; Zeng Y; Liu X; Jiang Y; Li Y; Shi L; Xiao N
    Med Biol Eng Comput; 2019 Sep; 57(9):1875-1887. PubMed ID: 31222531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AIxSuture: vision-based assessment of open suturing skills.
    Hoffmann H; Funke I; Peters P; Venkatesh DK; Egger J; Rivoir D; Röhrig R; Hölzle F; Bodenstedt S; Willemer MC; Speidel S; Puladi B
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1045-1052. PubMed ID: 38526613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time surgical instrument tracking in robot-assisted surgery using multi-domain convolutional neural network.
    Qiu L; Li C; Ren H
    Healthc Technol Lett; 2019 Dec; 6(6):159-164. PubMed ID: 32038850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review of automated performance metrics to assess surgical technical skills in robot-assisted laparoscopy.
    Guerin S; Huaulmé A; Lavoue V; Jannin P; Timoh KN
    Surg Endosc; 2022 Feb; 36(2):853-870. PubMed ID: 34750700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convolutional neural network-based surgical instrument detection.
    Cai T; Zhao Z
    Technol Health Care; 2020; 28(S1):81-88. PubMed ID: 32333566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF).
    Wang TY; Mehta VA; Sankey EW; Lavoie S; Abd-El-Barr MM; Yarbrough CK
    Clin Neurol Neurosurg; 2021 Jul; 206():106698. PubMed ID: 34030076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques.
    Anh NX; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105234. PubMed ID: 31794913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and Performance Verification of a Novel RCM Mechanism for a Minimally Invasive Surgical Robot.
    Shi H; Liang Z; Zhang B; Wang H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined 2D and 3D tracking of surgical instruments for minimally invasive and robotic-assisted surgery.
    Du X; Allan M; Dore A; Ourselin S; Hawkes D; Kelly JD; Stoyanov D
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1109-19. PubMed ID: 27038963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.