BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37177718)

  • 1. Design and Validation of Experimental Setup for Cell Spheroid Radiofrequency-Induced Heating.
    Androulakis I; Ferrero R; van Oossanen R; Manzin A; Denkova AG; Djanashvili K; Nadar R; van Rhoon GC
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia.
    Ferrero R; Androulakis I; Martino L; Nadar R; van Rhoon GC; Manzin A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field.
    Mackeyev Y; Mark C; Kumar N; Serda RE
    Acta Biomater; 2017 Apr; 53():619-630. PubMed ID: 28179157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.
    Winter L; Özerdem C; Hoffmann W; Santoro D; Müller A; Waiczies H; Seemann R; Graessl A; Wust P; Niendorf T
    PLoS One; 2013; 8(4):e61661. PubMed ID: 23613896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D tumour spheroids for the prediction of the effects of radiation and hyperthermia treatments.
    Brüningk SC; Rivens I; Box C; Oelfke U; Ter Haar G
    Sci Rep; 2020 Feb; 10(1):1653. PubMed ID: 32015396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor cure and cell survival after localized radiofrequency heating.
    Marmor JB; Hahn N; Hahn GM
    Cancer Res; 1977 Mar; 37(3):879-83. PubMed ID: 837383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic-thermal analysis of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors using a human model with blood flow and fat layer.
    Tange Y; Kanai Y; Saitoh Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4368-71. PubMed ID: 19163681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques.
    Cheung AY; Neyzari A
    Cancer Res; 1984 Oct; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trials of combined radiation and hyperthermia with various heating modalities in cancer therapy.
    Egawa S; Ishioka K; Kawada Y
    Radiat Med; 1984; 2(4):260-4. PubMed ID: 6537595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winner of the Lund Science Award 1992. Thermosensitization induced by step-down heating. A review on heat-induced sensitization to hyperthermia alone or hyperthermia combined with radiation.
    Lindegaard JC
    Int J Hyperthermia; 1992; 8(5):561-86. PubMed ID: 1402135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperthermia by electromagnetic fields to enhanced clinical results in oncology.
    van Rhoon GC; Paulides MM; van Holthe JM; Franckena M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():359-362. PubMed ID: 28324929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating properties of the re-entrant type cavity applicator for brain tumor with several resonant frequencies.
    Suzuki M; Kato K; Hirashima T; Shindo Y; Uzuka T; Takahashi H; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3064-7. PubMed ID: 19963557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating properties of re-entrant resonant applicator for brain tumor by electromagnetic heating modes.
    Shindo Y; Kato K; Tsuchiya K; Yabuhara T; Shigihara T; Iwazaki R; Uzuka T; Takahashi H; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3609-12. PubMed ID: 18002778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiofrequency hyperthermia for clinical cancer therapy.
    Kim JH; Hahn EW; Antich PP
    Natl Cancer Inst Monogr; 1982 Jun; 61():339-42. PubMed ID: 6757751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.