These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37177721)

  • 1. Effects of Walking Speed and Added Mass on Hip Joint Quasi-Stiffness in Healthy Young and Middle-Aged Adults.
    Fang S; Vijayan V; Reissman ME; Kinney AL; Reissman T
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of quasi-stiffness of the human hip in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(12):e81841. PubMed ID: 24349136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does Added Mass Affect the Gait of Middle-Aged Adults? An Assessment Using Statistical Parametric Mapping.
    Vijayan V; Fang S; Reissman T; Reissman ME; Kinney AL
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal and muscle activation adaptations during overground walking in response to lower body added mass.
    Vijayan V; Fang S; Reissman T; Kinney AL; Reissman ME
    Gait Posture; 2022 Feb; 92():116-122. PubMed ID: 34839206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
    Shamaei K; Cenciarini M; Adams AA; Gregorczyk KN; Schiffman JM; Dollar AM
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2389-401. PubMed ID: 25955513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of simulated reduced gravity and walking speed on ankle, knee, and hip quasi-stiffness in overground walking.
    MacLean MK; Ferris DP
    PLoS One; 2022; 17(8):e0271927. PubMed ID: 35944021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body?
    Fang S; Vijayan V; Reissman ME; Kinney AL; Reissman T
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking with an induced unilateral knee extension restriction affects lower but not upper body biomechanics in healthy adults.
    Sotelo M; Eichelberger P; Furrer M; Baur H; Schmid S
    Gait Posture; 2018 Sep; 65():182-189. PubMed ID: 30558928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds.
    Shafer BA; Powell JC; Young AJ; Sawicki GS
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):271-282. PubMed ID: 35788460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-stiffness of the knee joint is influenced by walking on a destabilising terrain.
    Foster AJ; Hudson PE; Smith N
    Knee; 2020 Dec; 27(6):1889-1898. PubMed ID: 33220578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ankle stiffness modulation during different gait speeds in individuals post-stroke.
    Hinton EH; Likens A; Hsiao HY; Binder-Markey BI; Binder-Macleod SA; Knarr BA
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105761. PubMed ID: 36099707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of unilateral backpack carriage on biomechanics of gait in adolescents: a kinematic analysis.
    Ozgül B; Akalan NE; Kuchimov S; Uygur F; Temelli Y; Polat MG
    Acta Orthop Traumatol Turc; 2012; 46(4):269-74. PubMed ID: 22951758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of quasi-stiffness of the human knee in the stance phase of walking.
    Shamaei K; Sawicki GS; Dollar AM
    PLoS One; 2013; 8(3):e59993. PubMed ID: 23533662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.
    Kulmala JP; Korhonen MT; Kuitunen S; Suominen H; Heinonen A; Mikkola A; Avela J
    Scand J Med Sci Sports; 2017 Sep; 27(9):956-963. PubMed ID: 27292352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.