These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 37177908)
1. High light triggers flavonoid and polysaccharide synthesis through DoHY5-dependent signaling in Dendrobium officinale. Li D; Ye G; Li J; Lai Z; Ruan S; Qi Q; Wang Z; Duan S; Jin HL; Wang HB Plant J; 2023 Aug; 115(4):1114-1133. PubMed ID: 37177908 [TBL] [Abstract][Full Text] [Related]
2. Light and Potassium Improve the Quality of Jia Y; Liu J; Xu M; Chen G; Tan M; Xiang Z Molecules; 2022 Jul; 27(15):. PubMed ID: 35956813 [TBL] [Abstract][Full Text] [Related]
3. DoMYB5 and DobHLH24, Transcription Factors Involved in Regulating Anthocyanin Accumulation in Yang K; Hou Y; Wu M; Pan Q; Xie Y; Zhang Y; Sun F; Zhang Z; Wu J Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108715 [TBL] [Abstract][Full Text] [Related]
4. Differential Accumulation of Anthocyanins in Yu Z; Liao Y; Teixeira da Silva JA; Yang Z; Duan J Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30241372 [No Abstract] [Full Text] [Related]
5. Transcriptome and metabolome profiling unveil the accumulation of flavonoids in Dendrobium officinale. Yuan Y; Zuo J; Zhang H; Zu M; Yu M; Liu S Genomics; 2022 May; 114(3):110324. PubMed ID: 35247586 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and Metabolome Reveal Salt-Stress Responses of Leaf Tissues from Zhang M; Yu Z; Zeng D; Si C; Zhao C; Wang H; Li C; He C; Duan J Biomolecules; 2021 May; 11(5):. PubMed ID: 34063498 [No Abstract] [Full Text] [Related]
7. A Comparison of the Flavonoid Biosynthesis Mechanisms of Liu S; Zhang H; Yuan Y Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233278 [No Abstract] [Full Text] [Related]
8. Putative genes in alkaloid biosynthesis identified in Dendrobium officinale by correlating the contents of major bioactive metabolites with genes expression between Protocorm-like bodies and leaves. Wang Z; Jiang W; Liu Y; Meng X; Su X; Cao M; Wu L; Yu N; Xing S; Peng D BMC Genomics; 2021 Jul; 22(1):579. PubMed ID: 34325653 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Differences in Polysaccharide and Alkaloid Biosynthesis in the Medicinal Orchids Dendrobium nobile and D. officinale. Zhang YW; Shi YC; Huang W; Zhang SB Physiol Plant; 2024; 176(5):e14575. PubMed ID: 39394938 [TBL] [Abstract][Full Text] [Related]
10. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Yuan Y; Zhang J; Liu X; Meng M; Wang J; Lin J Genomics; 2020 Mar; 112(2):1781-1794. PubMed ID: 31678153 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae). He C; Liu X; Teixeira da Silva JA; Liu N; Zhang M; Duan J Plant Mol Biol; 2020 Nov; 104(4-5):529-548. PubMed ID: 32876816 [TBL] [Abstract][Full Text] [Related]
12. Network Analysis of Transcriptome and LC-MS Reveals a Possible Biosynthesis Pathway of Anthocyanins in Ren Z; Qiu F; Wang Y; Yu W; Liu C; Sun Y; Wang Y; Zhang X; Xing S; Tao S; Huang Y; Liu G; Wei Z; Yu B; Du S; Lei Z; Wei G Biomed Res Int; 2020; 2020():6512895. PubMed ID: 32420359 [TBL] [Abstract][Full Text] [Related]
13. The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. Yu Z; He C; Teixeira da Silva JA; Luo J; Yang Z; Duan J Plant Sci; 2018 Dec; 277():43-54. PubMed ID: 30466600 [TBL] [Abstract][Full Text] [Related]
14. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. He C; Zhang J; Liu X; Zeng S; Wu K; Yu Z; Wang X; Teixeira da Silva JA; Lin Z; Duan J Plant Mol Biol; 2015 Jun; 88(3):219-31. PubMed ID: 25924595 [TBL] [Abstract][Full Text] [Related]
15. DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum. Jia N; Wang JJ; Liu J; Jiang J; Sun J; Yan P; Sun Y; Wan P; Ye W; Fan B Plant Physiol Biochem; 2021 May; 162():603-612. PubMed ID: 33774465 [TBL] [Abstract][Full Text] [Related]
16. [Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower]. Zhang SJ; Qian Z; Liu JJ; Zhang XF; Si JP Zhongguo Zhong Yao Za Zhi; 2018 May; 43(10):2025-2031. PubMed ID: 29933666 [TBL] [Abstract][Full Text] [Related]
17. Comparative metabolomic analyses of Chen Y; Shen Q; Lv P; Sun C PeerJ; 2020; 8():e9107. PubMed ID: 32655986 [TBL] [Abstract][Full Text] [Related]
18. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Yu Z; Dong W; Teixeira da Silva JA; He C; Si C; Duan J Protoplasma; 2021 Jul; 258(4):803-815. PubMed ID: 33404922 [TBL] [Abstract][Full Text] [Related]
19. Interactions between endophytic fungus Pestalotiopsis sp. DO14 and Dendrobium catenatum: Deciphering plant polysaccharide and flavonoid accumulation and underlying mechanisms by comparative transcriptome and metabolome analyses. Chen X; Wang S; Farag MA; Han Z; Chen D; Zhang X; Si J; Wu L Plant Physiol Biochem; 2023 Sep; 202():107942. PubMed ID: 37562204 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification and characterization of active ingredients related β-Glucosidases in Dendrobium catenatum. Wang Z; Zhao M; Zhang X; Deng X; Li J; Wang M BMC Genomics; 2022 Aug; 23(1):612. PubMed ID: 35999493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]