These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37178155)

  • 1. Developing and validating a natural language processing algorithm to extract preoperative cannabis use status documentation from unstructured narrative clinical notes.
    Sajdeya R; Mardini MT; Tighe PJ; Ison RL; Bai C; Jugl S; Hanzhi G; Zandbiglari K; Adiba FI; Winterstein AG; Pearson TA; Cook RL; Rouhizadeh M
    J Am Med Inform Assoc; 2023 Jul; 30(8):1418-1428. PubMed ID: 37178155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Prediabetes Discussions in Unstructured Clinical Documentation: Validation of a Natural Language Processing Algorithm.
    Schwartz JL; Tseng E; Maruthur NM; Rouhizadeh M
    JMIR Med Inform; 2022 Feb; 10(2):e29803. PubMed ID: 35200154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Natural Language Processing Algorithm for Classifying Suicidal Behaviors in Alzheimer's Disease and Related Dementia Patients: Development and Validation Using Electronic Health Records Data.
    Zandbiglari K; Hasanzadeh HR; Kotecha P; Sajdeya R; Goodin AJ; Jiao T; Adiba FI; Mardini MT; Bian J; Rouhizadeh M
    medRxiv; 2023 Jul; ():. PubMed ID: 37546764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of sleep information from clinical notes of Alzheimer's disease patients using natural language processing.
    Sivarajkumar S; Tam TYC; Mohammad HA; Viggiano S; Oniani D; Visweswaran S; Wang Y
    J Am Med Inform Assoc; 2024 Oct; 31(10):2217-2227. PubMed ID: 39001795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients.
    Shah RF; Bini S; Vail T
    Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical documentation of patient-reported medical cannabis use in primary care: Toward scalable extraction using natural language processing methods.
    Carrell DS; Cronkite DJ; Shea M; Oliver M; Luce C; Matson TE; Bobb JF; Hsu C; Binswanger IA; Browne KC; Saxon AJ; McCormack J; Jelstrom E; Ghitza UE; Campbell CI; Bradley KA; Lapham GT
    Subst Abus; 2022; 43(1):917-924. PubMed ID: 35254218
    [No Abstract]   [Full Text] [Related]  

  • 11. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study.
    Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J
    JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.
    Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N
    J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying early infant feeding status from clinical notes using natural language processing and machine learning.
    Lemas DJ; Du X; Rouhizadeh M; Lewis B; Frank S; Wright L; Spirache A; Gonzalez L; Cheves R; Magalhães M; Zapata R; Reddy R; Xu K; Parker L; Harle C; Young B; Louis-Jaques A; Zhang B; Thompson L; Hogan WR; Modave F
    Sci Rep; 2024 Apr; 14(1):7831. PubMed ID: 38570569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records.
    Wu W; Holkeboer KJ; Kolawole TO; Carbone L; Mahmoudi E
    Health Serv Res; 2023 Dec; 58(6):1292-1302. PubMed ID: 37534741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study.
    Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK
    BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.
    Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC
    Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.