These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37178239)

  • 1. Deciphering the Potential of Sulphur-Oxidizing Bacteria for Sulphate Production Correlating with pH Change.
    Nandni ; Rani S; Chopra G; Wati L
    Microb Ecol; 2023 Nov; 86(4):2282-2292. PubMed ID: 37178239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel sulphur-oxidizing bacteria consummate sulphur deficiency in oil seed crop.
    Joshi N; Gothalwal R; Singh M; Dave K
    Arch Microbiol; 2021 Jan; 203(1):1-6. PubMed ID: 32757115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.
    Xia FF; Su Y; Wei XM; He YH; Wu ZC; Ghulam A; He R
    Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of sulfur-oxidizing bacteria isolated from mustard (Brassica juncea L.) rhizosphere having the capability of improving sulfur and nitrogen uptake.
    Chaudhary S; Dhanker R; Singh K; Brar B; Goyal S
    J Appl Microbiol; 2022 Nov; 133(5):2814-2825. PubMed ID: 36260818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
    Sorokin DY; Robertson LA; Kuenen JG
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):251-62. PubMed ID: 15188891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability.
    Chaudhary S; Sindhu SS; Dhanker R; Kumari A
    Microbiol Res; 2023 Jun; 271():127340. PubMed ID: 36889205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of soil microbes in plant sulphur nutrition.
    Kertesz MA; Mirleau P
    J Exp Bot; 2004 Aug; 55(404):1939-45. PubMed ID: 15181108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of some sulphur compounds on soil microflora of spruce rhizosphere.
    Lettl A
    Folia Microbiol (Praha); 1981; 26(3):243-52. PubMed ID: 7274844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bacteria of the sulphur cycle.
    Pfennig N; Widdel F
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of supplementing sulphate-reducing bacteria along with sulphur on growth performance, nutrient utilization and methane emission in goats.
    Uniyal S; Chaudhary LC; Kala A; Agarwal N; Chaturvedi VB
    Trop Anim Health Prod; 2022 Dec; 55(1):3. PubMed ID: 36496527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage.
    Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z
    J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some factors influencing production of sulphate by oxidation of elemental sulphur and thiosulphate in upper horizons of spruce forest soils.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(2):158-63. PubMed ID: 6266935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forests.
    Lettl A; Langkramer O; Lochman V
    Folia Microbiol (Praha); 1981; 26(1):24-8. PubMed ID: 7203284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide.
    Meyer DD; Andrino FG; Possedente de Lira S; Fornaro A; Corção G; Brandelli A
    Environ Technol; 2016; 37(6):768-73. PubMed ID: 26269005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria.
    Stubner S; Wind T; Conrad R
    Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of zinc solubilization potential of arsenic tolerant Burkholderia spp. isolated from rice rhizospheric soil.
    Bhakat K; Chakraborty A; Islam E
    World J Microbiol Biotechnol; 2021 Feb; 37(3):39. PubMed ID: 33544268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.
    Varon-Lopez M; Dias AC; Fasanella CC; Durrer A; Melo IS; Kuramae EE; Andreote FD
    Environ Microbiol; 2014 Mar; 16(3):845-55. PubMed ID: 24033859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
    Scheerer U; Haensch R; Mendel RR; Kopriva S; Rennenberg H; Herschbach C
    J Exp Bot; 2010; 61(2):609-22. PubMed ID: 19923196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-oxidizing buffalo dung bacteria enhance growth and yield of
    Dhiman S; Dubey RC; Maheshwari DK; Kumar S
    Can J Microbiol; 2019 May; 65(5):377-386. PubMed ID: 30657697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland.
    Strauss H; Chmiel H; Christ A; Fugmann A; Hanselmann K; Kappler A; Königer P; Lutter A; Siedenberg K; Teichert BM
    Isotopes Environ Health Stud; 2016; 52(1-2):75-93. PubMed ID: 25922968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.