These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37178484)

  • 1. Ordinary state-based peri-ultrasound modeling to study the effects of multiple cracks on the nonlinear response of plate structures.
    Zhang G; Li X; Kundu T
    Ultrasonics; 2023 Aug; 133():107028. PubMed ID: 37178484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sideband peak count-index technique for monitoring multiple cracks in plate structures using ordinary state-based peri-ultrasound theory.
    Zhang G; Li X; Zhang S; Kundu T
    J Acoust Soc Am; 2022 Nov; 152(5):3035. PubMed ID: 36456255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring damage growth and topographical changes in plate structures using sideband peak count-index and topological acoustic sensing techniques.
    Zhang G; Deymier PA; Runge K; Kundu T
    Ultrasonics; 2024 Jul; 141():107354. PubMed ID: 38795521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peri-ultrasound for modeling linear and nonlinear ultrasonic response.
    Hafezi MH; Alebrahim R; Kundu T
    Ultrasonics; 2017 Sep; 80():47-57. PubMed ID: 28499124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical modeling with experimental verification investigating the effect of various nonlinearities on the sideband peak count-index technique.
    Zhang G; Hu B; Alnuaimi H; Amjad U; Kundu T
    Ultrasonics; 2024 Mar; 138():107259. PubMed ID: 38335920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring fatigue cracks in riveted plates using a sideband intensity based nonlinear ultrasonic technique.
    Hu B; Amjad U; Kundu T
    Ultrasonics; 2024 Jul; 141():107335. PubMed ID: 38692212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks.
    Wan X; Zhang Q; Xu G; Tse PW
    Sensors (Basel); 2014 May; 14(5):8528-46. PubMed ID: 24834908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks.
    Zhao Y; Li F; Cao P; Liu Y; Zhang J; Fu S; Zhang J; Hu N
    Ultrasonics; 2017 Aug; 79():60-67. PubMed ID: 28433810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.
    Delrue S; Aleshin V; Truyaert K; Bou Matar O; Van Den Abeele K
    Ultrasonics; 2018 Jan; 82():19-30. PubMed ID: 28734190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.
    Shen Y; Cesnik CE
    Ultrasonics; 2017 Feb; 74():106-123. PubMed ID: 27770666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method.
    Liu H; Zhao Y; Zhang H; Deng M; Hu N; Bi X
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks.
    Sun X; Liu H; Zhao Y; Qu J; Deng M; Hu N
    Ultrasonics; 2020 Sep; 107():106172. PubMed ID: 32450428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Sensing Nonlinear Ultrasonic Fatigue Crack Detection under Temperature Variation
    Kim N; Jang K; An YK
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks.
    Ding X; Li F; Zhao Y; Xu Y; Hu N; Cao P; Deng M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29690580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Study of Localized Crack-Induced Effects of Nonlinear Vibro-Acoustic Modulation.
    Broda D; Mendrok K; Silberschmidt VV; Pieczonka L; Staszewski WJ
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and numerical modeling of nonlinear lamb wave interaction with a breathing crack with low-frequency modulation.
    Yuan P; Xu X; Glorieux C; Jia K; Chen J; Chen X; Yin A
    Ultrasonics; 2024 May; 140():107306. PubMed ID: 38579487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves.
    Lee SE; Hong JW
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified sideband peak count based nonlinear ultrasonic technique for material characterization.
    Park S; Kundu T
    Ultrasonics; 2023 Feb; 128():106858. PubMed ID: 36272297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on nonlinear response analysis of micro-cracks under vibro-acoustic modulation.
    Duan X; Zheng H; Du W; Ling T; Yao R
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37212644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.
    Zhang M; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 May; 77():152-159. PubMed ID: 28237824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.