These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37178920)

  • 1. A selective nonpeptide somatostatin receptor 5 agonist effectively decreases insulin secretion in hyperinsulinism.
    Juliana CA; Chai J; Arroyo P; Rico-Bautista E; Betz SF; De León DD
    J Biol Chem; 2023 Jun; 299(6):104816. PubMed ID: 37178920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of insulin oversecretion by subcutaneous recombinant human insulin-like growth factor I in children with congenital hyperinsulinism due to defective beta-cell sulfonylurea receptor.
    Katz LE; Ferry RJ; Stanley CA; Collett-Solberg PF; Baker L; Cohen P
    J Clin Endocrinol Metab; 1999 Sep; 84(9):3117-24. PubMed ID: 10487673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperinsulinism of infancy: the regulated release of insulin by KATP channel-independent pathways.
    Straub SG; Cosgrove KE; Ammälä C; Shepherd RM; O'Brien RE; Barnes PD; Kuchinski N; Chapman JC; Schaeppi M; Glaser B; Lindley KJ; Sharp GW; Aynsley-Green A; Dunne MJ
    Diabetes; 2001 Feb; 50(2):329-39. PubMed ID: 11272144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotype-phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes.
    Henwood MJ; Kelly A; Macmullen C; Bhatia P; Ganguly A; Thornton PS; Stanley CA
    J Clin Endocrinol Metab; 2005 Feb; 90(2):789-94. PubMed ID: 15562009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible New Strategies for the Treatment of Congenital Hyperinsulinism.
    Sikimic J; Hoffmeister T; Gresch A; Kaiser J; Barthlen W; Wolke C; Wieland I; Lendeckel U; Krippeit-Drews P; Düfer M; Drews G
    Front Endocrinol (Lausanne); 2020; 11():545638. PubMed ID: 33193079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro insulin secretion by pancreatic tissue from infants with diazoxide-resistant congenital hyperinsulinism deviates from model predictions.
    Henquin JC; Nenquin M; Sempoux C; Guiot Y; Bellanné-Chantelot C; Otonkoski T; de Lonlay P; Nihoul-Fékété C; Rahier J
    J Clin Invest; 2011 Oct; 121(10):3932-42. PubMed ID: 21968111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a Glucagon-Like Peptide 1 Receptor Antagonist Antibody for Treatment of Hyperinsulinism.
    Peterson SM; Juliana CA; Hu CF; Chai J; Holliday C; Chan KY; Lujan Hernandez AG; Challocombe Z; Wang L; Han Z; Haas N; Stafford R; Axelrod F; Yuan TZ; De León DD; Sato AK
    Diabetes; 2023 Sep; 72(9):1320-1329. PubMed ID: 37358194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLP-1 receptor antagonist exendin-(9-39) elevates fasting blood glucose levels in congenital hyperinsulinism owing to inactivating mutations in the ATP-sensitive K+ channel.
    Calabria AC; Li C; Gallagher PR; Stanley CA; De León DD
    Diabetes; 2012 Oct; 61(10):2585-91. PubMed ID: 22855730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and Metabolomic Consequences of K
    Li C; Ackermann AM; Boodhansingh KE; Bhatti TR; Liu C; Schug J; Doliba N; Han B; Cosgrove KE; Banerjee I; Matschinsky FM; Nissim I; Kaestner KH; Naji A; Adzick NS; Dunne MJ; Stanley CA; De León DD
    Diabetes; 2017 Jul; 66(7):1901-1913. PubMed ID: 28442472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapy for persistent hyperinsulinemic hypoglycemia of infancy. Understanding the responsiveness of beta cells to diazoxide and somatostatin.
    Kane C; Lindley KJ; Johnson PR; James RF; Milla PJ; Aynsley-Green A; Dunne MJ
    J Clin Invest; 1997 Oct; 100(7):1888-93. PubMed ID: 9312191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exendin-(9-39) corrects fasting hypoglycemia in SUR-1-/- mice by lowering cAMP in pancreatic beta-cells and inhibiting insulin secretion.
    De León DD; Li C; Delson MI; Matschinsky FM; Stanley CA; Stoffers DA
    J Biol Chem; 2008 Sep; 283(38):25786-93. PubMed ID: 18635551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations.
    Pinney SE; MacMullen C; Becker S; Lin YW; Hanna C; Thornton P; Ganguly A; Shyng SL; Stanley CA
    J Clin Invest; 2008 Aug; 118(8):2877-86. PubMed ID: 18596924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism.
    Lithovius V; Saarimäki-Vire J; Balboa D; Ibrahim H; Montaser H; Barsby T; Otonkoski T
    Diabetologia; 2021 Mar; 64(3):630-640. PubMed ID: 33404684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaminolysis and insulin secretion: from bedside to bench and back.
    Kelly A; Li C; Gao Z; Stanley CA; Matschinsky FM
    Diabetes; 2002 Dec; 51 Suppl 3():S421-6. PubMed ID: 12475785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K
    ElSheikh A; Shyng SL
    Front Endocrinol (Lausanne); 2023; 14():1161117. PubMed ID: 37056678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells.
    Miki T; Nagashima K; Seino S
    J Mol Endocrinol; 1999 Apr; 22(2):113-23. PubMed ID: 10194514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism.
    Juliana CA; Benjet J; De Leon DD
    BMJ Open Diabetes Res Care; 2024 Apr; 12(2):. PubMed ID: 38575153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carriers of an inactivating beta-cell ATP-sensitive K(+) channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion.
    Huopio H; Vauhkonen I; Komulainen J; Niskanen L; Otonkoski T; Laakso M
    Diabetes Care; 2002 Jan; 25(1):101-6. PubMed ID: 11772909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of 4-(3-aminopyrrolidinyl)-3-aryl-5-(benzimidazol-2-yl)-pyridines as potent and selective SST5 agonists for the treatment of congenital hyperinsulinism.
    Zhao J; Wang S; Hee Kim S; Han S; Rico-Bautista E; Sturchler E; Nguyen J; Tan H; Staley C; Karin Kusnetzow A; Betz SF; Johns M; Goulet L; Luo R; Fowler M; Athanacio J; Markison S; Scott Struthers R; Zhu Y
    Bioorg Med Chem Lett; 2022 Sep; 71():128807. PubMed ID: 35605837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic beta-cells.
    Nenquin M; Szollosi A; Aguilar-Bryan L; Bryan J; Henquin JC
    J Biol Chem; 2004 Jul; 279(31):32316-24. PubMed ID: 15175349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.