These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 37179244)
1. Perihematomal edema-based CT-radiomics model to predict functional outcome in patients with intracerebral hemorrhage. Huang X; Wang D; Ma Y; Zhang Q; Ren J; Zhao H; Li S; Deng J; Yang J; Zhao Z; Xu M; Zhou Q; Zhou J Diagn Interv Imaging; 2023 Sep; 104(9):391-400. PubMed ID: 37179244 [TBL] [Abstract][Full Text] [Related]
2. Based on hematoma and perihematomal tissue NCCT imaging radiomics predicts early clinical outcome of conservatively treated spontaneous cerebral hemorrhage. Song X; Zhang H; Han Y; Lou S; Zhao E; Dong Y; Yang C Sci Rep; 2024 Aug; 14(1):18546. PubMed ID: 39122887 [TBL] [Abstract][Full Text] [Related]
3. Combination of Hematoma Volume and Perihematoma Radiomics Analysis on Baseline CT Scan Predicts the Growth of Perihematomal Edema. Wang J; Xiong X; Zou J; Fu J; Yin Y; Ye J Clin Neuroradiol; 2023 Mar; 33(1):199-209. PubMed ID: 35943522 [TBL] [Abstract][Full Text] [Related]
4. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Xie H; Ma S; Wang X; Zhang X Eur Radiol; 2020 Jan; 30(1):87-98. PubMed ID: 31385050 [TBL] [Abstract][Full Text] [Related]
5. Radiomics for prediction of intracerebral hemorrhage outcomes: A retrospective multicenter study. Huang X; Wang D; Zhang Q; Ma Y; Zhao H; Li S; Deng J; Ren J; Yang J; Zhao Z; Xu M; Zhou Q; Zhou J Neuroimage Clin; 2022; 36():103242. PubMed ID: 36279754 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of a clinical-radiomics nomogram for predicting a poor outcome and 30-day mortality after a spontaneous intracerebral hemorrhage. Xie Y; Chen F; Li H; Wu Y; Fu H; Zhong Q; Chen J; Wang X Quant Imaging Med Surg; 2022 Oct; 12(10):4900-4913. PubMed ID: 36185057 [TBL] [Abstract][Full Text] [Related]
7. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Song Z; Tang Z; Liu H; Guo D; Cai J; Zhou Z Eur Radiol; 2021 Jul; 31(7):4949-4959. PubMed ID: 33733691 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage. Li YL; Chen C; Zhang LJ; Zheng YN; Lv XN; Zhao LB; Li Q; Lv FJ World Neurosurg; 2023 Jul; 175():e264-e270. PubMed ID: 36958717 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage. Qi X; Hu G; Sun H; Chen Z; Yang C J Stroke Cerebrovasc Dis; 2022 Jun; 31(6):106475. PubMed ID: 35417846 [TBL] [Abstract][Full Text] [Related]
10. Perihematomal Edema Is Greater in the Presence of a Spot Sign but Does Not Predict Intracerebral Hematoma Expansion. Rodriguez-Luna D; Stewart T; Dowlatshahi D; Kosior JC; Aviv RI; Molina CA; Silva Y; Dzialowski I; Lum C; Czlonkowska A; Boulanger JM; Kase CS; Gubitz G; Bhatia R; Padma V; Roy J; Subramaniam S; Hill MD; Demchuk AM; Stroke; 2016 Feb; 47(2):350-5. PubMed ID: 26696644 [TBL] [Abstract][Full Text] [Related]
11. Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage. Song Z; Guo D; Tang Z; Liu H; Li X; Luo S; Yao X; Song W; Song J; Zhou Z Korean J Radiol; 2021 Mar; 22(3):415-424. PubMed ID: 33169546 [TBL] [Abstract][Full Text] [Related]
12. Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography. Feng C; Ding Z; Lao Q; Zhen T; Ruan M; Han J; He L; Shen Q Eur Radiol; 2024 May; 34(5):2908-2920. PubMed ID: 37938384 [TBL] [Abstract][Full Text] [Related]
13. Comparison of different noncontrast computed tomographic markers for predicting early perihematomal edema expansion in patients with intracerebral hemorrhage. Li YL; Zheng YN; Zhang LJ; Li ZQ; Deng L; Lv XN; Li Q; Lv FJ J Clin Neurosci; 2023 Jun; 112():1-5. PubMed ID: 37011516 [TBL] [Abstract][Full Text] [Related]
14. Quantitative imaging for predicting hematoma expansion in intracerebral hemorrhage: A multimodel comparison. Yang WS; Liu JY; Shen YQ; Xie XF; Zhang SQ; Liu FY; Yu JL; Ma YB; Xiao ZS; Duan HW; Li Q; Chen SX; Xie P J Stroke Cerebrovasc Dis; 2024 Jul; 33(7):107731. PubMed ID: 38657831 [TBL] [Abstract][Full Text] [Related]
15. The relationship between perihematomal edema and hematoma expansion in acute spontaneous intracerebral hemorrhage: an exploratory radiomics analysis study. Zhou Z; Wu X; Chen Y; Tan Y; Zhou Y; Huang T; Zhou H; Lai Q; Guo D Front Neurosci; 2024; 18():1394795. PubMed ID: 38745941 [TBL] [Abstract][Full Text] [Related]
16. Triage of 5 Noncontrast Computed Tomography Markers and Spot Sign for Outcome Prediction After Intracerebral Hemorrhage. Sporns PB; Kemmling A; Schwake M; Minnerup J; Nawabi J; Broocks G; Wildgruber M; Fiehler J; Heindel W; Hanning U Stroke; 2018 Oct; 49(10):2317-2322. PubMed ID: 30355120 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive prediction model predicts perihematomal edema growth in the acute stage after intracerebral hemorrhage. Zhang SQ; Zhang YL; Yuan L; Ma YB; Huang JM; Wen YQ; Zhu MH; Yang WS Clin Neurol Neurosurg; 2024 Oct; 245():108495. PubMed ID: 39126898 [TBL] [Abstract][Full Text] [Related]
18. Non-Contrast CT-Based Radiomics Score for Predicting Hematoma Enlargement in Spontaneous Intracerebral Hemorrhage. Li H; Xie Y; Liu H; Wang X Clin Neuroradiol; 2022 Jun; 32(2):517-528. PubMed ID: 34324004 [TBL] [Abstract][Full Text] [Related]
19. A Radiomics Model Based on CT Images Combined with Multiple Machine Learning Models to Predict the Prognosis of Spontaneous Intracerebral Hemorrhage. Pei L; Fang T; Xu L; Ni C World Neurosurg; 2024 Jan; 181():e856-e866. PubMed ID: 37931880 [TBL] [Abstract][Full Text] [Related]
20. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study. Zhang H; Yang YF; Song XL; Hu HJ; Yang YY; Zhu X; Yang C BMC Med Imaging; 2024 Jul; 24(1):170. PubMed ID: 38982357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]