These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37179414)
1. Comparative study of ternary hybrid nanofluids with role of thermal radiation and Cattaneo-Christov heat flux between double rotating disks. Noreen S; Farooq U; Waqas H; Fatima N; Alqurashi MS; Imran M; Akgül A; Bariq A Sci Rep; 2023 May; 13(1):7795. PubMed ID: 37179414 [TBL] [Abstract][Full Text] [Related]
2. Computation of stagnation coating flow of electro-conductive ternary Williamson hybrid [Formula: see text] nanofluid with a Cattaneo-Christov heat flux model and magnetic induction. Latha KBS; Reddy MG; Tripathi D; Bég OA; Kuharat S; Ahmad H; Ozsahin DU; Askar S Sci Rep; 2023 Jul; 13(1):10972. PubMed ID: 37414803 [TBL] [Abstract][Full Text] [Related]
3. Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model. Shah Z; Rooman M; Shutaywi M RSC Adv; 2023 Jan; 13(6):3552-3560. PubMed ID: 36756589 [TBL] [Abstract][Full Text] [Related]
4. Comparative appraisal of mono and hybrid nanofluid flows comprising carbon nanotubes over a three-dimensional surface impacted by Cattaneo-Christov heat flux. Alharbi KAM; Ramzan M; Shahmir N; Ghazwani HAS; Elmasry Y; Eldin SM; Bilal M Sci Rep; 2023 May; 13(1):7964. PubMed ID: 37198300 [TBL] [Abstract][Full Text] [Related]
5. Impact of Cattaneo-Christov heat flux model on MHD hybrid nano-micropolar fluid flow and heat transfer with viscous and joule dissipation effects. Tassaddiq A Sci Rep; 2021 Jan; 11(1):67. PubMed ID: 33431877 [TBL] [Abstract][Full Text] [Related]
6. On the numerical simulation of stagnation point flow of non-Newtonian fluid (Carreau fluid) with Cattaneo-Christov heat flux. Ijaz Khan M; Nigar M; Hayat T; Alsaedi A Comput Methods Programs Biomed; 2020 Apr; 187():105221. PubMed ID: 31786453 [TBL] [Abstract][Full Text] [Related]
7. Cattaneo-Christov heat flow model for copper-water nanofluid heat transfer under Marangoni convection and slip conditions. Alharbi KAM; Alshahrani MN; Ullah N; Khan NM; Marek K; Mousa AAA; Ali S Sci Rep; 2022 Mar; 12(1):5360. PubMed ID: 35354849 [TBL] [Abstract][Full Text] [Related]
8. Role of Cattaneo-Christov heat flux in an MHD Micropolar dusty nanofluid flow with zero mass flux condition. Ramzan M; Gul H; Baleanu D; Nisar KS; Malik MY Sci Rep; 2021 Sep; 11(1):19528. PubMed ID: 34593927 [TBL] [Abstract][Full Text] [Related]
9. Second-order slip effect on bio-convectional viscoelastic nanofluid flow through a stretching cylinder with swimming microorganisms and melting phenomenon. Waqas H; Farooq U; Shah Z; Kumam P; Shutaywi M Sci Rep; 2021 May; 11(1):11208. PubMed ID: 34045579 [TBL] [Abstract][Full Text] [Related]
10. Swirling flow of fluid containing (SiO Zhang J; Ahmed A; Naveed Khan M; Wang F; Abdelmohsen SA; Tariq H J Appl Biomater Funct Mater; 2022; 20():22808000221094685. PubMed ID: 35531919 [TBL] [Abstract][Full Text] [Related]
11. Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo-Christov heat flux and autocatalytic chemical reaction. Gul H; Ramzan M; Chung JD; Chu YM; Kadry S Sci Rep; 2021 Jul; 11(1):14625. PubMed ID: 34272432 [TBL] [Abstract][Full Text] [Related]
12. Biomedical aspects of entropy generation on MHD flow of TiO2-Ag/blood hybrid nanofluid in a porous cylinder. Shanmugapriyan N; Jakeer S Comput Methods Biomech Biomed Engin; 2024 Aug; 27(11):1492-1509. PubMed ID: 37578009 [TBL] [Abstract][Full Text] [Related]
13. Heat and mass transfer analysis for magnetized flow of [Formula: see text] nanolubricant with variable properties: an application of Cattaneo-Christov model. Riaz M; Khan N; Hashmi MS; Younis J Sci Rep; 2023 May; 13(1):8717. PubMed ID: 37253938 [TBL] [Abstract][Full Text] [Related]
14. Effect of Thermal Radiation on Three-Dimensional Magnetized Rotating Flow of a Hybrid Nanofluid. Asghar A; Lund LA; Shah Z; Vrinceanu N; Deebani W; Shutaywi M Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564275 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Abid N; Ramzan M; Chung JD; Kadry S; Chu YM Sci Rep; 2020 Nov; 10(1):19300. PubMed ID: 33168878 [TBL] [Abstract][Full Text] [Related]
16. Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface. Ramzan M; Shah Z; Kumam P; Khan W; Watthayu W; Kumam W PLoS One; 2022; 17(4):e0264208. PubMed ID: 35421096 [TBL] [Abstract][Full Text] [Related]
17. Hall current effect in bioconvection Oldroyd-B nanofluid flow through a porous medium with Cattaneo-Christov heat and mass flux theory. Khan NS; Sriyab S; Kaewkhao A; Thawinan E Sci Rep; 2022 Nov; 12(1):19821. PubMed ID: 36396699 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear convection stagnation point flow of Oldroyd-B nanofluid with non-Fourier heat and non-Fick's mass flux over a spinning sphere. Kenea G; Ibrahim W Sci Rep; 2024 Jan; 14(1):841. PubMed ID: 38191682 [TBL] [Abstract][Full Text] [Related]
19. Optimal Homotopic Exploration of Features of Cattaneo-Christov Model in Second Grade Nanofluid Flow via Darcy-Forchheimer Medium Subject to Viscous Dissipation and Thermal Radiation. Rasool G; Shafiq A; Chu YM; Bhutta MS; Ali A Comb Chem High Throughput Screen; 2022; 25(14):2485-2497. PubMed ID: 34477515 [TBL] [Abstract][Full Text] [Related]
20. Integration of statistical and simulation analyses for ternary hybrid nanofluid over a moving surface with melting heat transfer. Rehman AU; Abbas Z; Hussain Z; Hasnain J; Asma M Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38522098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]