BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37179958)

  • 1. Application of
    Alruwaili A; Rashid GMM; Bugg TDH
    Green Chem; 2023 May; 25(9):3549-3560. PubMed ID: 37179958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.
    Ahmad M; Roberts JN; Hardiman EM; Singh R; Eltis LD; Bugg TD
    Biochemistry; 2011 Jun; 50(23):5096-107. PubMed ID: 21534568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of endogenous multi-copper oxidases mcoA and mcoC in Rhodococcus jostii RHA1 enhances lignin bioconversion to 2,4-pyridine-dicarboxylic acid.
    Rashid GMM; Sodré V; Luo J; Bugg TDH
    Biotechnol Bioeng; 2024 Apr; 121(4):1366-1370. PubMed ID: 38079064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin.
    Alruwaili A; Rashid GMM; Sodré V; Mason J; Rehman Z; Menakath AK; Cheung D; Brown SP; Bugg TDH
    RSC Chem Biol; 2023 Jan; 4(1):47-55. PubMed ID: 36685258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from
    Wei Z; Wilkinson RC; Rashid GMM; Brown D; Fülöp V; Bugg TDH
    Biochemistry; 2019 Dec; 58(52):5281-5293. PubMed ID: 30946572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1.
    Shimizu T; Suzuki K; Inui M
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):58. PubMed ID: 38175243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catabolism of lignin-derived
    Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD
    Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of
    Yasin R; Rashid GMM; Ali I; Bugg TDH
    Heliyon; 2023 Sep; 9(9):e19511. PubMed ID: 37810037
    [No Abstract]   [Full Text] [Related]  

  • 13. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae.
    Linde D; Coscolín C; Liers C; Hofrichter M; Martínez AT; Ruiz-Dueñas FJ
    Protein Expr Purif; 2014 Nov; 103():28-37. PubMed ID: 25153532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment.
    Rahmanpour R; Bugg TD
    FEBS J; 2013 May; 280(9):2097-104. PubMed ID: 23560779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of
    Li X; He Y; Zhang L; Xu Z; Ben H; Gaffrey MJ; Yang Y; Yang S; Yuan JS; Qian WJ; Yang B
    Biotechnol Biofuels; 2019; 12():60. PubMed ID: 30923568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation.
    Catucci G; Valetti F; Sadeghi SJ; Gilardi G
    Biotechnol Appl Biochem; 2020 Sep; 67(5):751-759. PubMed ID: 32860433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.
    Rahmanpour R; Rea D; Jamshidi S; Fülöp V; Bugg TD
    Arch Biochem Biophys; 2016 Mar; 594():54-60. PubMed ID: 26901432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain.
    Cagide C; Marizcurrena JJ; Vallés D; Alvarez B; Castro-Sowinski S
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1707-1724. PubMed ID: 36773063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity.
    Singh R; Grigg JC; Armstrong Z; Murphy MEP; Eltis LD
    J Biol Chem; 2012 Mar; 287(13):10623-10630. PubMed ID: 22308037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B.
    Rahmanpour R; Bugg TD
    Arch Biochem Biophys; 2015 May; 574():93-8. PubMed ID: 25558792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.