These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37180017)

  • 1. β-Ketoadipic acid production from poly(ethylene terephthalate) waste
    You SM; Lee SS; Ryu MH; Song HM; Kang MS; Jung YJ; Song EC; Sung BH; Park SJ; Joo JC; Kim HT; Cha HG
    RSC Adv; 2023 May; 13(21):14102-14109. PubMed ID: 37180017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440.
    Werner AZ; Clare R; Mand TD; Pardo I; Ramirez KJ; Haugen SJ; Bratti F; Dexter GN; Elmore JR; Huenemann JD; Peabody GL; Johnson CW; Rorrer NA; Salvachúa D; Guss AM; Beckham GT
    Metab Eng; 2021 Sep; 67():250-261. PubMed ID: 34265401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals.
    Mudondo J; Lee HS; Jeong Y; Kim TH; Kim S; Sung BH; Park SH; Park K; Cha HG; Yeon YJ; Kim HT
    J Microbiol Biotechnol; 2023 Jan; 33(1):1-14. PubMed ID: 36451300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials.
    Kim HT; Hee Ryu M; Jung YJ; Lim S; Song HM; Park J; Hwang SY; Lee HS; Yeon YJ; Sung BH; Bornscheuer UT; Park SJ; Joo JC; Oh DX
    ChemSusChem; 2021 Oct; 14(19):4251-4259. PubMed ID: 34339110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial synthesis of vanillin from waste poly(ethylene terephthalate).
    Sadler JC; Wallace S
    Green Chem; 2021 Jul; 23(13):4665-4672. PubMed ID: 34276250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products.
    Diao J; Hu Y; Tian Y; Carr R; Moon TS
    Cell Rep; 2023 Jan; 42(1):111908. PubMed ID: 36640302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex.
    Hwang DH; Lee ME; Cho BH; Oh JW; You SK; Ko YJ; Hyeon JE; Han SO
    Sci Total Environ; 2022 Oct; 842():156890. PubMed ID: 35753492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid.
    Yang W; Liu R; Li C; Song Y; Hu C
    Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste.
    Zhang H; Fang T; Yao X; Li X; Zhu W
    Adv Mater; 2023 May; 35(20):e2210758. PubMed ID: 36809549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes.
    Hachisuka SI; Nishii T; Yoshida S
    Appl Environ Microbiol; 2021 Aug; 87(18):e0002021. PubMed ID: 34260304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate.
    Dissanayake L; Jayakody LN
    Front Bioeng Biotechnol; 2021; 9():656465. PubMed ID: 34124018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioconversion of Plastic Waste Based on Mass Full Carbon Backbone Polymeric Materials to Value-Added Polyhydroxyalkanoates (PHAs).
    Johnston B; Adamus G; Ekere AI; Kowalczuk M; Tchuenbou-Magaia F; Radecka I
    Bioengineering (Basel); 2022 Sep; 9(9):. PubMed ID: 36134978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation.
    Liu P; Zheng Y; Yuan Y; Han Y; Su T; Qi Q
    Waste Manag; 2023 Dec; 172():51-59. PubMed ID: 37714010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of reusable Ni/γ-Al
    Yan M; Yang Y; Chen F; Hantoko D; Pariatamby A; Kanchanatip E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102560-102573. PubMed ID: 37668784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Arenes from Polyethylene Terephthalate (PET) over a Co/TiO
    Hongkailers S; Jing Y; Wang Y; Hinchiranan N; Yan N
    ChemSusChem; 2021 Oct; 14(19):4330-4339. PubMed ID: 34390526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol.
    Loll-Krippleber R; Sajtovich VA; Ferguson MW; Ho B; Burns AR; Payliss BJ; Bellissimo J; Peters S; Roy PJ; Wyatt HDM; Brown GW
    Microb Cell Fact; 2022 Dec; 21(1):280. PubMed ID: 36587193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature upcycling of PET waste into high-purity H
    Su H; Li T; Wang S; Zhu L; Hu Y
    J Hazard Mater; 2023 Feb; 443(Pt A):130120. PubMed ID: 36265384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation.
    Kosiorowska KE; Biniarz P; Dobrowolski A; Leluk K; Mirończuk AM
    Sci Total Environ; 2022 Jul; 831():154841. PubMed ID: 35358523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidolysis of Poly(ethylene terephthalate) Waste Using Succinic Acid under Microwave Irradiation as a New Chemical Upcycling Method.
    Hoang CN; Nguyen NT; Ta ST; Nguyen NN; Hoang D
    ACS Omega; 2022 Dec; 7(50):47285-47295. PubMed ID: 36570295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.